正规文法转换有限自动机程序
时间: 2023-12-10 22:38:51 浏览: 107
正规文法可以转换为有限自动机,这个过程可以通过程序实现。以下是一个简单的Python程序,用于将正规文法转换为有限自动机(DFA):
```python
class DFA:
def __init__(self, states, alphabet, transition_function, start_state, accept_states):
self.states = states
self.alphabet = alphabet
self.transition_function = transition_function
self.start_state = start_state
self.accept_states = accept_states
def read_input(self, input_string):
current_state = self.start_state
for char in input_string:
current_state = self.transition_function[current_state][char]
return current_state in self.accept_states
def convert_grammar_to_dfa(grammar):
# Step 1: Create a set of states for the DFA
dfa_states = set()
for non_terminal in grammar.non_terminals:
dfa_states.add(frozenset({non_terminal}))
# Step 2: Create the alphabet for the DFA
dfa_alphabet = grammar.terminals
# Step 3: Create the transition function for the DFA
dfa_transition_function = {}
for state in dfa_states:
for symbol in dfa_alphabet:
next_state = set()
for non_terminal in state:
productions = grammar.productions_for(non_terminal)
for production in productions:
if symbol in production:
next_state.add(production.right)
if next_state:
dfa_transition_function[state, symbol] = frozenset(next_state)
else:
dfa_transition_function[state, symbol] = None
# Step 4: Create the start state for the DFA
dfa_start_state = frozenset({grammar.start})
# Step 5: Create the accept states for the DFA
dfa_accept_states = set()
for state in dfa_states:
for non_terminal in state:
if grammar.is_non_terminal(non_terminal) and grammar.is_start_symbol(non_terminal):
dfa_accept_states.add(state)
# Step 6: Return the DFA
return DFA(dfa_states, dfa_alphabet, dfa_transition_function, dfa_start_state, dfa_accept_states)
```
这个程序使用了一个DFA类,它包含有限状态集合、字母表、转移函数、起始状态和接受状态。转换过程分为6个步骤:
1. 创建DFA状态集合。
2. 创建DFA字母表。
3. 创建DFA转移函数。
4. 创建DFA起始状态。
5. 创建DFA接受状态。
6. 返回DFA。
该程序的核心是第3步中的转移函数的创建。对于每个状态和字母,程序遍历文法的每个产生式,以查找下一个状态。如果找到了下一个状态,则将其添加到转移函数中。
请注意,该程序仅适用于正则文法,因为只有正则文法可以转换为DFA。如果输入的文法不是正则文法,则程序将无法正确转换。
阅读全文