[qq,ll] = eig([x p]’*[v A*p],[x p]’*[u M*p]);

时间: 2023-09-10 07:15:21 浏览: 124
这是一个MATLAB中求解矩阵特征值和特征向量的示例代码,其中: - 输入矩阵为[x p]'*[v A*p]和[x p]'*[u M*p]的组合,其中x、p、v、A、u和M均为已知矩阵或向量。 - 输出矩阵qq和向量ll分别为输入矩阵的特征向量和特征值。 具体代码如下: ``` x = rand(10,1); p = rand(10,1); v = rand(10,1); A = rand(10,10); u = rand(10,1); M = rand(10,10); M_inv = inv(M); [V,D] = eig([x p]'*[v A*p], [x p]'*[u M*p]); qq = [v A*p]*V*M_inv; ll = diag(D); ``` 该代码中,首先定义了矩阵x、p、v、A、u和M,并通过inv函数求出M的逆矩阵M_inv。然后调用eig函数求解[x p]'*[v A*p]和[x p]'*[u M*p]的特征向量和特征值,分别存储在V和D中。最后,根据特征向量和特征值计算出qq和ll。 需要注意的是,该代码中使用了MATLAB内置函数inv和eig,因此在使用前需要确保这两个函数已经被正确加载。此外,由于特征值和特征向量的计算涉及到矩阵的求逆和对角化,因此对于较大的矩阵,计算时间可能会比较长。
相关问题

将u = M*x; q = sqrt(x’*u); x = x/q; u = u/q; v = A*x; rho = x’*v; k = 0; g = x; gnorm = 1; log=[]; % Initialisierungen while gnorm > tol, k = k + 1; galt = g; if exist(’C’), g = 2*(C\(C’\(v - rho*u))); % vorkonditionierter Gradient else g = 2*(v - rho*u); % Gradient end if k == 1, p = -g; else p = -g + (g’*M*g)/(galt’*M*galt)*p; end [qq,ll] = eig([x p]’*[v A*p],[x p]’*[u M*p]); [rho,ii] = min(diag(ll)); delta = qq(2,ii)/qq(1,ii); x = x + delta*p; u = M*x; q = sqrt(x’*u); x = x/q; u = u/q; v = A*x; gnorm = norm(g); if nargout>2, log = [log; [k,rho,gnorm]]; end end转换成Fortran程序

下面是将MATLAB代码转换为Fortran的程序示例: ``` PROGRAM Rayleigh_quotient_iteration IMPLICIT NONE INTEGER :: k, ii, n, kmax, iter REAL :: tol, rho, delta, q, gnorm, gnorm_old REAL, DIMENSION(:,:), ALLOCATABLE :: A, M, x, u, v, g, galt, p REAL, DIMENSION(:), ALLOCATABLE :: ll, qq, log LOGICAL :: C_exist ! Read in the size of the matrices READ(*,*) n ! Read in the matrices A and M ALLOCATE(A(n,n), M(n,n)) DO i = 1, n READ(*,*) (A(i,j), j = 1, n) END DO DO i = 1, n READ(*,*) (M(i,j), j = 1, n) END DO ! Set up the initial guess for x ALLOCATE(x(n)) x = 1.0 ! Set up the other variables kmax = 100 tol = 1E-6 iter = 0 ! Main loop DO ! Compute u = M*x and q = sqrt(x'u) ALLOCATE(u(n)) u = MATMUL(M, x) q = SQRT(DOT_PRODUCT(x, u)) x = x / q u = u / q ! Compute v = A*x and rho = x'v ALLOCATE(v(n)) v = MATMUL(A, x) rho = DOT_PRODUCT(x, v) ! Compute the initial gradient g ALLOCATE(g(n)) g = 2.0 * (v - rho*u) gnorm = NORM2(g) gnorm_old = gnorm ! Initialize the log array ALLOCATE(log(3, kmax)) log(:,1) = [0, rho, gnorm] ! Main iteration loop DO k = 1, kmax ! Compute the search direction p IF (k == 1) THEN p = -g ELSE p = -g + DOT_PRODUCT(g, MATMUL(M, g)) / DOT_PRODUCT(galt, MATMUL(M, galt)) * p END IF ! Compute the eigenvalues and eigenvectors of [x p]'[v A*p] / [x p]'[u M*p] ALLOCATE(qq(2,2), ll(2)) qq(1,:) = x qq(2,:) = p ll = EIG(MATMUL(TRANSPOSE(qq),MATMUL([v,A*p],qq)), MATMUL(TRANSPOSE(qq),MATMUL([u,M*p],qq))) ! Update x and u ii = INDEX(MINVAL(ll)) delta = qq(2,ii) / qq(1,ii) x = x + delta * p u = MATMUL(M, x) ! Compute the new gradient g galt = g v = MATMUL(A, x) rho = DOT_PRODUCT(x, v) g = 2.0 * (v - rho*u) gnorm_old = gnorm gnorm = NORM2(g) ! Check for convergence IF (gnorm <= tol) EXIT ! Update the log array iter = iter + 1 log(:,iter+1) = [k, rho, gnorm] END DO ! Print the final result WRITE(*,*) "Lambda = ", rho WRITE(*,*) "Number of iterations = ", k ! Deallocate the arrays DEALLOCATE(A, M, x, u, v, g, galt, p, ll, qq, log) ! Exit the program EXIT END DO END PROGRAM Rayleigh_quotient_iteration ``` 请注意,这只是一个简单的程序示例,可能需要进行调整才能适合您的特定情况。此外,该程序还假定您已经了解Rayleigh quotient iteration算法,因此不包括该算法的详细解释。

[qq,ll] = eig([x p]’*[v A*p],[x p]’*[u M*p]);转换成Fortran代码

下面是将该公式转换成Fortran代码的示例: ``` program eig_example implicit none integer, parameter :: n = 10 ! 矩阵维度 real, dimension(n,n) :: A, M, u, v, x, p real, dimension(n+1,n+1) :: mat1, mat2 real, dimension(n) :: qq, ll integer :: i, j, info ! 初始化矩阵和向量 A = reshape([ (i+j, i=1,n), j=1,n ], [n,n]) M = reshape([ (i-j, i=1,n), j=1,n ], [n,n]) u = reshape([ (i, i=1,n) ], [n,1]) v = reshape([ (1.0/i, i=1,n) ], [n,1]) x = reshape([ (1.0/(i+j), i=1,n) ], [n,1]) p = reshape([ (1.0/(i-j), i=1,n) ], [n,1]) ! 构造矩阵 mat1 和 mat2 mat1(1:n,1:n) = A mat1(1:n,n+1) = p mat1(n+1,1:n) = transpose(p) mat1(n+1,n+1) = 0.0 mat2(1:n,1:n) = M mat2(1:n,n+1) = p mat2(n+1,1:n) = transpose(p) mat2(n+1,n+1) = 0.0 ! 计算 qq 和 ll call dgemv('T', n+1, n+1, 1.0, mat1, n+1, [x, transpose(p)], 1, 0.0, qq, 1) call dgemv('T', n+1, n+1, 1.0, mat2, n+1, [u, transpose(p)], 1, 0.0, ll, 1) call dgeev('N', 'V', n, qq, n, ll, 0.0, 1.0, n, info) ! 输出结果 print *, "qq = ", qq print *, "ll = ", ll end program eig_example ``` 在上面的代码中,我们首先定义了矩阵和向量的维度和值,然后构造了两个矩阵 mat1 和 mat2,最后使用 BLAS 和 LAPACK 提供的子例程计算 qq 和 ll。具体来说,我们使用了 dgemv 子例程计算矩阵向量积,使用 dgeev 子例程计算特征值和特征向量。最后,我们输出了计算结果。 请注意,上面的代码仅供参考,具体实现方式可能与您的实际情况不完全相同。在编写实际代码时,请根据您自己的需求进行修改和调整。
阅读全文

相关推荐

mx = 8; my = 8; % x轴和y轴阵元个数 sn = 4; % 信号个数 dw = 0.5; % 半径波长比 snr = 10; % 信噪比 N = 1000; % 采样点数 fangwei = [10, 25, 135, 170]; % 信号方位角 yangjiao = [60 80 20 10]; % 信号俯仰角 for i = 1:sn for m = 1:mx daoxiang1(m, i) = exp(-j * 2 * pi * dw * (m - 1) * cos(fangwei(i) * pi / 180) * cos(yangjiao(i) * pi / 180)); end for mm = 1:my daoxiang2(mm, i) = exp(-j * 2 * pi * dw * mm * sin(fangwei(i) * pi / 180) * cos(yangjiao(i) * pi / 180)); end ss(i, :) = randn(1, N); % 生成高斯白噪声 end daoxiang = [daoxiang1; daoxiang2]; Signal = daoxiang * ss; x = awgn(Signal, snr, 'measured'); % 加入高斯白噪声 R = x * x' / N; [tzxiangliang, tzzhi] = eig(R); Nspace = tzxiangliang(:, 1:mx + my - sn); % 噪声子空间对应小的特征值(从小到大排列) for azi = 1:180 for ele = 1:90 for m = 1:mx daoxiang3(m, 1) = exp(-j * 2 * pi * dw * (m - 1) * cos(azi * pi / 180) * cos(ele * pi / 180)); end for mm = 1:my daoxiang4(mm, 1) = exp(-j * 2 * pi * dw * mm * sin(azi * pi / 180) * cos(ele * pi / 180)); end AQ1 = [daoxiang3; daoxiang4]; Power = AQ1' * Nspace * Nspace' * AQ1; % 在1-180度范围内进行计算 P(ele, azi) = -10 * log10(abs(Power)); end end [ele_grid, azi_grid] = meshgrid(1:90, 1:180); [x, y, z] = sph2cart(azi_grid / 180 * pi, (90 - ele_grid) / 180 * pi, P); mesh(x, y, z); title('九元L阵;信噪比:[50,50,50,50];距离波长比:0.5'); xlabel('x'); ylabel('y'); zlabel('z'); 把这段代码改成经过10次蒙特卡洛实验后,求出方位角和俯仰角的角度均值

最新推荐

recommend-type

基于springboot的酒店管理系统源码(java毕业设计完整源码+LW).zip

项目均经过测试,可正常运行! 环境说明: 开发语言:java JDK版本:jdk1.8 框架:springboot 数据库:mysql 5.7/8 数据库工具:navicat 开发软件:eclipse/idea
recommend-type

WildFly 8.x中Apache Camel结合REST和Swagger的演示

资源摘要信息:"CamelEE7RestSwagger:Camel on EE 7 with REST and Swagger Demo" 在深入分析这个资源之前,我们需要先了解几个关键的技术组件,它们是Apache Camel、WildFly、Java DSL、REST服务和Swagger。下面是这些知识点的详细解析: 1. Apache Camel框架: Apache Camel是一个开源的集成框架,它允许开发者采用企业集成模式(Enterprise Integration Patterns,EIP)来实现不同的系统、应用程序和语言之间的无缝集成。Camel基于路由和转换机制,提供了各种组件以支持不同类型的传输和协议,包括HTTP、JMS、TCP/IP等。 2. WildFly应用服务器: WildFly(以前称为JBoss AS)是一款开源的Java应用服务器,由Red Hat开发。它支持最新的Java EE(企业版Java)规范,是Java企业应用开发中的关键组件之一。WildFly提供了一个全面的Java EE平台,用于部署和管理企业级应用程序。 3. Java DSL(领域特定语言): Java DSL是一种专门针对特定领域设计的语言,它是用Java编写的小型语言,可以在Camel中用来定义路由规则。DSL可以提供更简单、更直观的语法来表达复杂的集成逻辑,它使开发者能够以一种更接近业务逻辑的方式来编写集成代码。 4. REST服务: REST(Representational State Transfer)是一种软件架构风格,用于网络上客户端和服务器之间的通信。在RESTful架构中,网络上的每个资源都被唯一标识,并且可以使用标准的HTTP方法(如GET、POST、PUT、DELETE等)进行操作。RESTful服务因其轻量级、易于理解和使用的特性,已经成为Web服务设计的主流风格。 5. Swagger: Swagger是一个开源的框架,它提供了一种标准的方式来设计、构建、记录和使用RESTful Web服务。Swagger允许开发者描述API的结构,这样就可以自动生成文档、客户端库和服务器存根。通过Swagger,可以清晰地了解API提供的功能和如何使用这些API,从而提高API的可用性和开发效率。 结合以上知识点,CamelEE7RestSwagger这个资源演示了如何在WildFly应用服务器上使用Apache Camel创建RESTful服务,并通过Swagger来记录和展示API信息。整个过程涉及以下几个技术步骤: - 首先,需要在WildFly上设置和配置Camel环境,确保Camel能够运行并且可以作为路由引擎来使用。 - 其次,通过Java DSL编写Camel路由,定义如何处理来自客户端的HTTP请求,并根据请求的不同执行相应的业务逻辑。 - 接下来,使用Swagger来记录和描述创建的REST API。这包括定义API的路径、支持的操作、请求参数和响应格式等。 - 最后,通过Swagger提供的工具生成API文档和客户端代码,以及服务器端的存根代码,从而使得开发者可以更加便捷地理解和使用这些RESTful服务。 这个资源的实践演示对于想要学习如何在Java EE平台上使用Camel集成框架,并且希望提供和记录REST服务的开发者来说是非常有价值的。通过这种方式,开发者可以更加快速和简单地创建和管理Web服务,同时也增强了API的可访问性和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通

![【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通](https://docs.lammps.org/_images/lammps-gui-main.png) # 摘要 声子晶体作为一种具有周期性结构的材料,在声学隐身、微波和红外领域具有广泛的应用潜力。本文从基础理论出发,深入探讨了声子晶体的概念、物理模型和声子带结构的理论解析,同时介绍了声子晶体的数值模拟方法,包括有限元方法(FEM)、离散元方法(DEM)和分子动力学(MD)。本文还提供了一套完整的声子晶体模拟实践指南,涵盖了模拟前的准备工作、详细的模拟步骤以及结果验证和案例分析。此外,文章探讨了声子晶体模拟的高级技巧和拓展
recommend-type

2024-07-27怎么用python转换成农历日期

在Python中,可以使用`lunarcalendar`库来将公历日期转换为农历日期。首先,你需要安装这个库,可以通过pip命令进行安装: ```bash pip install lunarcalendar ``` 安装完成后,你可以使用以下代码将公历日期转换为农历日期: ```python from lunarcalendar import Converter, Solar, Lunar, DateNotExist # 创建一个公历日期对象 solar_date = Solar(2024, 7, 27) # 将公历日期转换为农历日期 try: lunar_date = Co
recommend-type

FDFS客户端Python库1.2.6版本发布

资源摘要信息:"FastDFS是一个开源的轻量级分布式文件系统,它对文件进行管理,功能包括文件存储、文件同步、文件访问等,适用于大规模文件存储和高并发访问场景。FastDFS为互联网应用量身定制,充分考虑了冗余备份、负载均衡、线性扩容等机制,保证系统的高可用性和扩展性。 FastDFS 架构包含两个主要的角色:Tracker Server 和 Storage Server。Tracker Server 作用是负载均衡和调度,它接受客户端的请求,为客户端提供文件访问的路径。Storage Server 作用是文件存储,一个 Storage Server 中可以有多个存储路径,文件可以存储在不同的路径上。FastDFS 通过 Tracker Server 和 Storage Server 的配合,可以完成文件上传、下载、删除等操作。 Python 客户端库 fdfs-client-py 是为了解决 FastDFS 文件系统在 Python 环境下的使用。fdfs-client-py 使用了 Thrift 协议,提供了文件上传、下载、删除、查询等接口,使得开发者可以更容易地利用 FastDFS 文件系统进行开发。fdfs-client-py 通常作为 Python 应用程序的一个依赖包进行安装。 针对提供的压缩包文件名 fdfs-client-py-master,这很可能是一个开源项目库的名称。根据文件名和标签“fdfs”,我们可以推测该压缩包包含的是 FastDFS 的 Python 客户端库的源代码文件。这些文件可以用于构建、修改以及扩展 fdfs-client-py 功能以满足特定需求。 由于“标题”和“描述”均与“fdfs-client-py-master1.2.6.zip”有关,没有提供其它具体的信息,因此无法从标题和描述中提取更多的知识点。而压缩包文件名称列表中只有一个文件“fdfs-client-py-master”,这表明我们目前讨论的资源摘要信息是基于对 FastDFS 的 Python 客户端库的一般性了解,而非基于具体文件内容的分析。 根据标签“fdfs”,我们可以深入探讨 FastDFS 相关的概念和技术细节,例如: - FastDFS 的分布式架构设计 - 文件上传下载机制 - 文件同步机制 - 元数据管理 - Tracker Server 的工作原理 - Storage Server 的工作原理 - 容错和数据恢复机制 - 系统的扩展性和弹性伸缩 在实际使用中,开发者可以通过 fdfs-client-py 库来与 FastDFS 文件系统进行交互,利用其提供的 API 接口实现文件的存储、管理等功能,从而开发出高效、可靠的文件处理应用。开发者可以根据项目的实际需求,选择合适的 FastDFS 版本,并根据官方文档进行安装、配置及优化,确保系统稳定运行。 总的来说,fdfs-client-py 是 FastDFS 文件系统与 Python 应用之间的一座桥梁,它使得开发者能够更加方便地将 FastDFS 集成到基于 Python 开发的应用中,发挥出 FastDFS 在文件管理方面的优势。"
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

传感器集成全攻略:ICM-42688-P运动设备应用详解

![传感器集成全攻略:ICM-42688-P运动设备应用详解](https://static.mianbaoban-assets.eet-china.com/xinyu-images/MBXY-CR-ba33fcfbde1d1207d7b8fe45b6ea58d0.png) # 摘要 ICM-42688-P传感器作为一种先进的惯性测量单元,广泛应用于多种运动设备中。本文首先介绍了ICM-42688-P传感器的基本概述和技术规格,然后深入探讨了其编程基础,包括软件接口、数据读取处理及校准测试。接着,本文详细分析了该传感器在嵌入式系统、运动控制和人机交互设备中的实践应用,并且探讨了高级功能开发,
recommend-type

matlab 中实现 astar

在MATLAB中,A*算法是一种用于求解最短路径问题的启发式搜索算法。它适用于带权重的图或网格,特别是当有大量潜在解决方案时,比如迷宫寻路问题。以下是使用MATLAB基本步骤来实现A*算法: 1. **数据结构准备**: - 创建一个二维数组表示地图,其中0代表可以通行的节点,其他值代表障碍物或边界。 - 定义一个队列(通常使用`prioritiesqueue`)来存储待探索的节点及其信息。 2. **初始化**: - 设定起始节点(start),目标节点(goal),以及每个节点的初始g值(从起点到该点的实际代价)和f值(g值加上估计的h值,即启发函数)。 3.
recommend-type

掌握Dash-Website构建Python数据可视化网站

资源摘要信息:"Dash-Website" 1. Python编程语言 Python是一种广泛使用的高级编程语言,以其简洁明了的语法和强大的功能而受到开发者的青睐。Python支持多种编程范式,包括面向对象、命令式、函数式和过程式编程。它的设计哲学强调代码的可读性和简洁的语法(尤其是使用空格缩进来区分代码块,而不是使用大括号或关键字)。Python解释器和广泛的库支持使其可以广泛应用于Web开发、数据分析、人工智能、科学计算以及更多领域。 2. Dash框架 Dash是一个开源的Python框架,用于构建交互式的Web应用程序。Dash是专门为数据分析和数据科学团队设计的,它允许用户无需编写JavaScript、HTML和CSS就能创建功能丰富的Web应用。Dash应用由纯Python编写,这意味着数据科学家和分析师可以使用他们的数据分析技能,直接在Web环境中创建数据仪表板和交互式可视化。 3. Dash-Website 在给定的文件信息中,"Dash-Website" 可能指的是一个使用Dash框架创建的网站。Dash网站可能是一个用于展示数据、分析结果或者其他类型信息的Web平台。这个网站可能会使用Dash提供的组件,比如图表、滑块、输入框等,来实现复杂的用户交互。 4. Dash-Website-master 文件名称中的"Dash-Website-master"暗示这是一个版本控制仓库的主分支。在版本控制系统中,如Git,"master"分支通常是项目的默认分支,包含了最稳定的代码。这表明提供的压缩包子文件中包含了构建和维护Dash-Website所需的所有源代码文件、资源文件、配置文件和依赖声明文件。 5. GitHub和版本控制 虽然文件信息中没有明确指出,但通常在描述一个项目(例如网站)时,所提及的"压缩包子文件"很可能是源代码的压缩包,而且可能是从版本控制系统(如GitHub)中获取的。GitHub是一个基于Git的在线代码托管平台,它允许开发者存储和管理代码,并跟踪代码的变更历史。在GitHub上,一个项目被称为“仓库”(repository),开发者可以创建分支(branch)来独立开发新功能或进行实验,而"master"分支通常用作项目的主分支。 6. Dash的交互组件 Dash框架提供了一系列的交互式组件,允许用户通过Web界面与数据进行交互。这些组件包括但不限于: - 输入组件,如文本框、滑块、下拉菜单和复选框。 - 图形组件,用于展示数据的图表和可视化。 - 输出组件,如文本显示、下载链接和图像显示。 - 布局组件,如行和列布局,以及HTML组件,如按钮和标签。 7. Dash的部署 创建完Dash应用后,需要将其部署到服务器上以供公众访问。Dash支持多种部署方式,包括通过Heroku、AWS、Google Cloud Platform和其他云服务。部署过程涉及到设置Web服务器、配置数据库(如果需要)以及确保应用运行环境稳定。Dash文档提供了详细的部署指南,帮助开发者将他们的应用上线。 8. 项目维护和贡献 项目如Dash-Website通常需要持续的维护和更新。开发者可能需要添加新功能、修复bug和优化性能。此外,开源项目也鼓励社区成员为其贡献代码或文档。GitHub平台为项目维护者和贡献者提供了一套工具,如Pull Requests、Issues、Wiki和讨论区,以便更高效地协作和沟通。 总结而言,从给定的文件信息来看,“Dash-Website”很可能是一个利用Python语言和Dash框架构建的交互式数据可视化网站,其源代码可能托管在GitHub上,并且有一个名为“Dash-Website-master”的主分支。该网站可能具有丰富的交互组件,支持数据展示和用户互动,并且可以通过各种方式部署到Web服务器上。此外,作为一个开源项目,它可能还涉及到社区维护和协作开发的过程。