dbscan算法JAVA代码
时间: 2023-04-07 12:03:21 浏览: 125
我可以回答这个问题。以下是一个简单的DBSCAN算法的JAVA代码示例:
```
import java.util.ArrayList;
import java.util.List;
public class DBSCAN {
private List<Point> points;
public DBSCAN(List<Point> points) {
this.points = points;
}
public List<List<Point>> cluster(double eps, int minPts) {
List<List<Point>> clusters = new ArrayList<>();
List<Point> noise = new ArrayList<>();
List<Point> visited = new ArrayList<>();
for (Point point : points) {
if (visited.contains(point)) {
continue;
}
visited.add(point);
List<Point> neighbors = getNeighbors(point, eps);
if (neighbors.size() < minPts) {
noise.add(point);
} else {
List<Point> cluster = new ArrayList<>();
cluster.add(point);
clusters.add(expandCluster(cluster, neighbors, eps, minPts, visited));
}
}
if (!noise.isEmpty()) {
clusters.add(noise);
}
return clusters;
}
private List<Point> expandCluster(List<Point> cluster, List<Point> neighbors, double eps, int minPts, List<Point> visited) {
for (Point neighbor : neighbors) {
if (!visited.contains(neighbor)) {
visited.add(neighbor);
List<Point> neighborNeighbors = getNeighbors(neighbor, eps);
if (neighborNeighbors.size() >= minPts) {
neighbors.addAll(neighborNeighbors);
}
}
if (!cluster.contains(neighbor)) {
cluster.add(neighbor);
}
}
return cluster;
}
private List<Point> getNeighbors(Point point, double eps) {
List<Point> neighbors = new ArrayList<>();
for (Point neighbor : points) {
if (point.distance(neighbor) <= eps) {
neighbors.add(neighbor);
}
}
return neighbors;
}
public static class Point {
private double x;
private double y;
public Point(double x, double y) {
this.x = x;
this.y = y;
}
public double distance(Point other) {
double dx = x - other.x;
double dy = y - other.y;
return Math.sqrt(dx * dx + dy * dy);
}
@Override
public boolean equals(Object obj) {
if (obj == null || !(obj instanceof Point)) {
return false;
}
Point other = (Point) obj;
return x == other.x && y == other.y;
}
@Override
public int hashCode() {
return Double.hashCode(x) ^ Double.hashCode(y);
}
}
}
```
这是一个基于欧几里得距离的DBSCAN算法实现,可以用于聚类分析。
阅读全文