class PPOMemory: def __init__(self, batch_size): self.states = [] self.probs = [] self.vals = [] self.actions = [] self.rewards = [] self.dones = [] self.batch_size = batch_size def sample(self): batch_step = np.arange(0, len(self.states), self.batch_size) indices = np.arange(len(self.states), dtype=np.int64) np.random.shuffle(indices) batches = [indices[i:i+self.batch_size] for i in batch_step] return np.array(self.states),np.array(self.actions),np.array(self.probs),\ np.array(self.vals),np.array(self.rewards),np.array(self.dones),batches def push(self, state, action, probs, vals, reward, done): self.states.append(state) self.actions.append(action) self.probs.append(probs) self.vals.append(vals) self.rewards.append(reward) self.dones.append(done) def clear(self): self.states = [] self.probs = [] self.actions = [] self.rewards = [] self.dones = [] self.vals = []

时间: 2024-04-02 09:34:06 浏览: 15
这段代码是一个 PPO 算法中的经验回放(experience replay)类,用于存储和采样交互数据。具体来说,这个类有以下几个成员函数: 1. 构造函数 __init__:初始化经验回放缓存的大小 batch_size,并创建空的列表来存储状态、动作、概率、价值、奖励和完成标志等信息。 2. 采样函数 sample:将经验回放缓存中的数据按照 batch_size 分成若干个 batch,然后随机打乱数据索引,最后返回一个包含所有 batch 的列表。每个 batch 包含一个状态状态列表、一个动作列表、一个概率列表、一个价值列表、一个奖励列表和一个完成标志列表。 3. 存储函数 push:将交互数据(即一个状态 state、一个动作 action、一个概率 probs、一个价值 vals、一个奖励 reward 和一个完成标志 done)存储到经验回放缓存中。 4. 清空函数 clear:清空经验回放缓存,以便下一次使用。 整个经验回放类的作用是存储和采样交互数据,以便训练 PPO 算法时能够从多个交互轮次中有效地学习。其中,采样函数 sample 会将数据随机打乱,以避免过于相关的数据干扰训练。
相关问题

多智能体编队actor-critic pytorch代码

以下是一个简单的多智能体编队actor-critic算法的PyTorch实现代码。该代码演示了如何使用actor-critic算法来训练多个智能体以形成编队。该代码使用一个简单的环境,该环境包含一个目标点和多个智能体,智能体的任务是在不碰撞的情况下尽可能接近目标点。 ```python import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F import numpy as np import random # 定义一个智能体类 class Agent: def __init__(self, state_size, action_size, agent_id, num_agents): self.state_size = state_size self.action_size = action_size self.agent_id = agent_id self.num_agents = num_agents # 定义actor网络和critic网络 self.actor = Actor(state_size, action_size) self.critic = Critic(state_size) # 定义优化器 self.actor_optimizer = optim.Adam(self.actor.parameters(), lr=0.001) self.critic_optimizer = optim.Adam(self.critic.parameters(), lr=0.001) # 定义经验回放缓冲区 self.memory = ReplayBuffer(action_size) def act(self, state): state = torch.from_numpy(state).float().unsqueeze(0) action_probs = F.softmax(self.actor(state), dim=1) action_probs = action_probs.detach().numpy().squeeze() action = np.random.choice(self.action_size, p=action_probs) return action def learn(self, experiences, gamma): states, actions, rewards, next_states, dones = experiences # 计算critic网络的损失 Qvals = self.critic(states) Qvals_next = self.critic(next_states) Qval = Qvals.gather(1, actions) Qval_next = rewards + gamma * Qvals_next.max(1)[0].unsqueeze(1) * (1 - dones) critic_loss = F.mse_loss(Qval, Qval_next.detach()) # 更新critic网络 self.critic_optimizer.zero_grad() critic_loss.backward() self.critic_optimizer.step() # 计算actor网络的损失 probs = F.softmax(self.actor(states), dim=1) log_probs = torch.log(probs.gather(1, actions)) Qvals = self.critic(states) advantages = Qvals.detach() - Qvals.mean() actor_loss = -(log_probs * advantages).mean() # 更新actor网络 self.actor_optimizer.zero_grad() actor_loss.backward() self.actor_optimizer.step() # 定义一个actor网络 class Actor(nn.Module): def __init__(self, state_size, action_size): super(Actor, self).__init__() self.fc1 = nn.Linear(state_size, 32) self.fc2 = nn.Linear(32, 64) self.fc3 = nn.Linear(64, action_size) def forward(self, state): x = F.relu(self.fc1(state)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x # 定义一个critic网络 class Critic(nn.Module): def __init__(self, state_size): super(Critic, self).__init__() self.fc1 = nn.Linear(state_size, 32) self.fc2 = nn.Linear(32, 64) self.fc3 = nn.Linear(64, 1) def forward(self, state): x = F.relu(self.fc1(state)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x # 定义一个经验回放缓冲区 class ReplayBuffer: def __init__(self, action_size, buffer_size=10000, batch_size=128): self.action_size = action_size self.buffer_size = buffer_size self.batch_size = batch_size self.memory = [] self.position = 0 def add(self, state, action, reward, next_state, done): experience = (state, action, reward, next_state, done) if len(self.memory) < self.buffer_size: self.memory.append(None) self.memory[self.position] = experience self.position = (self.position + 1) % self.buffer_size def sample(self): experiences = random.sample(self.memory, k=self.batch_size) states = torch.from_numpy(np.vstack([e[0] for e in experiences if e is not None])).float() actions = torch.from_numpy(np.vstack([e[1] for e in experiences if e is not None])).long() rewards = torch.from_numpy(np.vstack([e[2] for e in experiences if e is not None])).float() next_states = torch.from_numpy(np.vstack([e[3] for e in experiences if e is not None])).float() dones = torch.from_numpy(np.vstack([e[4] for e in experiences if e is not None]).astype(np.uint8)).float() return (states, actions, rewards, next_states, dones) # 定义一个环境类 class Env: def __init__(self, num_agents): self.num_agents = num_agents self.state_size = 4 self.action_size = 2 self.target_pos = np.array([0.0, 0.0]) self.agent_pos = np.random.uniform(-1, 1, size=(self.num_agents, 2)) def reset(self): self.target_pos = np.array([0.0, 0.0]) self.agent_pos = np.random.uniform(-1, 1, size=(self.num_agents, 2)) obs = np.hstack([self.agent_pos, self.target_pos]) return obs def step(self, actions): actions = np.clip(actions, -1, 1) self.agent_pos += actions self.agent_pos = np.clip(self.agent_pos, -1, 1) obs = np.hstack([self.agent_pos, self.target_pos]) rewards = np.zeros(self.num_agents) for i in range(self.num_agents): dist = np.linalg.norm(self.agent_pos[i] - self.target_pos) if dist < 0.1: rewards[i] = 1 dones = np.zeros(self.num_agents) return obs, rewards, dones # 定义一个多智能体编队类 class MultiAgentFormation: def __init__(self, num_agents): self.env = Env(num_agents) self.num_agents = num_agents self.state_size = self.env.state_size * self.num_agents self.action_size = self.env.action_size self.gamma = 0.99 self.agents = [Agent(self.env.state_size, self.env.action_size, i, self.num_agents) for i in range(self.num_agents)] def train(self, num_episodes=1000, max_t=1000): for i_episode in range(num_episodes): obs = self.env.reset() for t in range(max_t): actions = [] for i in range(self.num_agents): action = self.agents[i].act(obs[i]) actions.append(action) next_obs, rewards, dones = self.env.step(actions) for i in range(self.num_agents): self.agents[i].memory.add(obs[i], actions[i], rewards[i], next_obs[i], dones[i]) obs = next_obs if len(self.agents[0].memory) > self.agents[0].memory.batch_size: for agent in self.agents: experiences = agent.memory.sample() agent.learn(experiences, self.gamma) if np.any(dones): break # 测试 ma = MultiAgentFormation(num_agents=3) ma.train() ```

用RBM识别尾矿坝异常模式,给出他的代码

以下是使用Python实现的RBM模型,用于尾矿坝异常模式识别: 首先,需要导入必要的库: ```python import numpy as np import pandas as pd import tensorflow as tf from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score ``` 接着,读取尾矿坝数据集,将数据集划分为训练集和测试集: ```python data = pd.read_csv('tailings_dataset.csv') X = data.drop(['Class'], axis=1).values y = data['Class'].values X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) ``` 然后,定义RBM类: ```python class RBM: def __init__(self, n_visible, n_hidden, learning_rate=0.1, batch_size=10, n_epochs=100): self.n_visible = n_visible self.n_hidden = n_hidden self.learning_rate = learning_rate self.batch_size = batch_size self.n_epochs = n_epochs self.W = tf.Variable(tf.random.normal(shape=(n_visible, n_hidden), mean=0.0, stddev=0.01)) self.v_bias = tf.Variable(tf.zeros(shape=(n_visible, 1))) self.h_bias = tf.Variable(tf.zeros(shape=(n_hidden, 1))) def sigmoid(self, x): return 1 / (1 + tf.exp(-x)) def prob_h_given_v(self, v): return self.sigmoid(tf.matmul(v, self.W) + self.h_bias) def prob_v_given_h(self, h): return self.sigmoid(tf.matmul(h, tf.transpose(self.W)) + self.v_bias) def sample_prob(self, probs): return tf.nn.relu(tf.sign(probs - tf.random.uniform(shape=tf.shape(probs)))) def gibbs_sampling(self, v): h_probs = self.prob_h_given_v(v) h_states = self.sample_prob(h_probs) v_probs = self.prob_v_given_h(h_states) v_states = self.sample_prob(v_probs) return [h_states, v_probs, v_states] def train(self, X): n_batches = int(np.ceil(len(X) / self.batch_size)) X_tf = tf.convert_to_tensor(X, dtype=tf.float32) for epoch in range(self.n_epochs): for batch in range(n_batches): v0 = X_tf[batch * self.batch_size:(batch + 1) * self.batch_size] h0_probs = self.prob_h_given_v(v0) h0_states = self.sample_prob(h0_probs) chain_start = h0_states for step in range(1): h_states, v_probs, v_states = self.gibbs_sampling(chain_start) chain_start = v_states positive_grad = tf.matmul(tf.transpose(v0), h0_probs) negative_grad = tf.matmul(tf.transpose(v_states), h_states) W_grad = (positive_grad - negative_grad) / tf.cast(tf.shape(v0)[0], tf.float32) vb_grad = tf.reduce_mean(v0 - v_states, axis=0, keepdims=True) hb_grad = tf.reduce_mean(h0_probs - h_states, axis=0, keepdims=True) self.W.assign_add(self.learning_rate * W_grad) self.v_bias.assign_add(self.learning_rate * vb_grad) self.h_bias.assign_add(self.learning_rate * hb_grad) ``` 最后,实例化RBM类并进行训练: ```python rbm = RBM(n_visible=X_train.shape[1], n_hidden=10, learning_rate=0.01, batch_size=20, n_epochs=1000) rbm.train(X_train) ``` 可以使用训练好的模型进行预测: ```python h_probs = rbm.prob_h_given_v(X_test) h_states = rbm.sample_prob(h_probs) v_probs = rbm.prob_v_given_h(h_states) v_states = rbm.sample_prob(v_probs) y_pred = [1 if np.any(x) else 0 for x in v_states] accuracy = accuracy_score(y_test, y_pred) print('Accuracy:', accuracy) ``` 完整代码如下所示:

相关推荐

最新推荐

recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

用matlab绘制高斯色噪声情况下的频率估计CRLB,其中w(n)是零均值高斯色噪声,w(n)=0.8*w(n-1)+e(n),e(n)服从零均值方差为se的高斯分布

以下是用matlab绘制高斯色噪声情况下频率估计CRLB的代码: ```matlab % 参数设置 N = 100; % 信号长度 se = 0.5; % 噪声方差 w = zeros(N,1); % 高斯色噪声 w(1) = randn(1)*sqrt(se); for n = 2:N w(n) = 0.8*w(n-1) + randn(1)*sqrt(se); end % 计算频率估计CRLB fs = 1; % 采样频率 df = 0.01; % 频率分辨率 f = 0:df:fs/2; % 频率范围 M = length(f); CRLB = zeros(M,1); for
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

python中从Excel中取的列没有了0

可能是因为Excel中的列被格式化为数字,而数字前导的0被省略了。可以在Excel中将列的格式更改为文本,这样就会保留数字前导的0。另外,在Python中读取Excel时,可以将列的数据类型指定为字符串,这样就可以保留数字前导的0。例如: ```python import pandas as pd # 读取Excel文件 df = pd.read_excel('data.xlsx', dtype={'列名': str}) # 输出列数据 print(df['列名']) ``` 其中,`dtype={'列名': str}`表示将列名为“列名”的列的数据类型指定为字符串。
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。
recommend-type

关系数据表示学习

关系数据卢多维奇·多斯桑托斯引用此版本:卢多维奇·多斯桑托斯。关系数据的表示学习机器学习[cs.LG]。皮埃尔和玛丽·居里大学-巴黎第六大学,2017年。英语。NNT:2017PA066480。电话:01803188HAL ID:电话:01803188https://theses.hal.science/tel-01803188提交日期:2018年HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaireUNIVERSITY PIERRE和 MARIE CURIE计算机科学、电信和电子学博士学院(巴黎)巴黎6号计算机科学实验室D八角形T HESIS关系数据表示学习作者:Ludovic DOS SAntos主管:Patrick GALLINARI联合主管:本杰明·P·伊沃瓦斯基为满足计算机科学博士学位的要求而提交的论文评审团成员:先生蒂埃里·A·退休记者先生尤尼斯·B·恩