解释:gnorm = np.amax(np.abs(gfk))
时间: 2024-03-07 14:54:24 浏览: 193
这行代码使用了 NumPy 库中的函数 `np.amax`,它的作用是返回给定数组中的最大值。在这个例子中,给定的数组是 `gfk`,也就是一个一维的 NumPy 数组。在计算 `gnorm` 时,它使用了 `np.abs` 函数,它返回给定数组中每个元素的绝对值,这样可以确保计算的是向量的模长而不是它们的代数和。因此这行代码的作用是计算向量 `gfk` 的模长,也就是其最大绝对值。
相关问题
解释: while (gnorm > tol) and (k < iterations): if updateJ == 1: x_log = np.append(x_log, xk.T) yk = fun(xk) y_log = np.append(y_log, yk) J = jacobian(x0) H = np.dot(J.T, J) H_lm = H + (lamda * np.eye(9)) gfk = grad(xk) pk = - np.linalg.inv(H_lm).dot(gfk) pk = pk.A.reshape(1, -1)[0] # 二维变一维 xk1 = xk + pk fval = fun(xk1) if fval < old_fval: lamda = lamda / 10 xk = xk1 old_fval = fval updateJ = 1 else: updateJ = 0 lamda = lamda * 10 gnorm = np.amax(np.abs(gfk)) k = k + 1 grad_log = np.append(grad_log, np.linalg.norm(xk - x_log[-1:]))
这段代码是 Levenberg-Marquardt 算法的主要迭代过程。while 循环条件是当梯度的范数大于指定的容差 tol 并且迭代次数 k 小于指定的最大迭代次数 iterations 时继续迭代。如果 updateJ 的值为 1,则更新 x_log、y_log 和 J。其中,x_log 和 y_log 分别记录了每次迭代后的参数向量和目标函数值,J 是目标函数的雅可比矩阵,用于计算 Hessian 矩阵 H。H_lm 为加上阻尼因子的 Hessian 矩阵,用于计算搜索方向 pk。pk 是搜索方向,用于计算下一个参数向量 xk1。如果新的目标函数值 fval 小于旧的目标函数值 old_fval,则减小阻尼因子 lamda 并更新参数向量 xk 和目标函数值 old_fval,同时将 updateJ 设为 1。如果新的目标函数值大于等于旧的目标函数值,则增加阻尼因子 lamda 并将 updateJ 设为 0。每次迭代结束后,更新迭代次数 k 和梯度下降的迭代值 grad_log。
解释这段代码:def bfgs(fun, grad, x0, iterations, tol): """ Minimization of scalar function of one or more variables using the BFGS algorithm. Parameters ---------- fun : function Objective function. grad : function Gradient function of objective function. x0 : numpy.array, size=9 Initial value of the parameters to be estimated. iterations : int Maximum iterations of optimization algorithms. tol : float Tolerance of optimization algorithms. Returns ------- xk : numpy.array, size=9 Parameters wstimated by optimization algorithms. fval : float Objective function value at xk. grad_val : float Gradient value of objective function at xk. grad_log : numpy.array The record of gradient of objective function of each iteration. """ fval = None grad_val = None x_log = [] y_log = [] grad_log = [] x0 = asarray(x0).flatten() # iterations = len(x0) * 200 old_fval = fun(x0) gfk = grad(x0) k = 0 N = len(x0) I = np.eye(N, dtype=int) Hk = I old_old_fval = old_fval + np.linalg.norm(gfk) / 2 xk = x0 x_log = np.append(x_log, xk.T) y_log = np.append(y_log, fun(xk)) grad_log = np.append(grad_log, np.linalg.norm(xk - x_log[-1:])) gnorm = np.amax(np.abs(gfk)) while (gnorm > tol) and (k < iterations): pk = -np.dot(Hk, gfk) try: alpha, fc, gc, old_fval, old_old_fval, gfkp1 = _line_search_wolfe12(fun, grad, xk, pk, gfk, old_fval, old_old_fval, amin=1e-100, amax=1e100) except _LineSearchError: break x1 = xk + alpha * pk sk = x1 - xk xk = x1 if gfkp1 is None: gfkp1 = grad(x1) yk = gfkp1 - gfk gfk = gfkp1 k += 1 gnorm = np.amax(np.abs(gfk)) grad_log = np.append(grad_log, np.linalg.norm(xk - x_log[-1:])) x_log = np.append(x_log, xk.T) y_log = np.append(y_log, fun(xk)) if (gnorm <= tol): break if not np.isfinite(old_fval): break try: rhok = 1.0 / (np.dot(yk, sk)) except ZeroDivisionError: rhok = 1000.0 if isinf(rhok): rhok = 1000.0 A1 = I - sk[:, np.newaxis] * yk[np.newaxis, :] * rhok A2 = I - yk[:, np.newaxis] * sk[np.newaxis, :] * rhok Hk = np.dot(A1, np.dot(Hk, A2)) + (rhok * sk[:, np.newaxis] * sk[np.newaxis, :]) fval = old_fval grad_val = grad_log[-1] return xk, fval, grad_val, x_log, y_log, grad_log
这段代码实现了BFGS算法,用于最小化一个标量函数,其参数包括目标函数fun,目标函数的梯度grad,初始参数值x0,最大迭代次数iterations,以及优化算法的容忍度tol。函数返回优化结果xk,目标函数在xk处的值fval,目标函数在xk处的梯度grad_val,以及优化过程中记录的x,y,grad信息。
BFGS算法是一种拟牛顿法,通过逐步逼近目标函数的海森矩阵的逆矩阵来进行优化。该算法使用了矩阵Hk来逼近逆海森矩阵,并根据每次迭代的参数更新来更新矩阵Hk。在每次迭代中,该算法通过求解一维的线搜索问题来确定下一步迭代所需的步长,同时更新参数值和梯度值,并记录每次迭代的信息以便最终返回。
阅读全文