case( key ) 3'b001: if(d_out == 8'd13) d_out<= 8'd09; else d_out<= d_out + 1'b1; 3'b010: if(d_out == 8'd23) d_out<= 8'd09; else d_out<= d_out + 1'b1; 3'b100: if(d_out == 8'd33) d_out<= 8'd09; else d_out<= d_out + 1'b1; default: d_out<= d_out; endcase end end endmodule

时间: 2024-02-10 19:03:48 浏览: 28
这段代码是一个always块,在时钟上升沿触发计数器的计数逻辑。具体来说: 使用case语句对3位的按键信号key进行匹配,根据不同的按键信号执行相应的计数操作。 当按键信号key等于3'b001时,如果计数器的计数值等于13(二进制数1101),则将计数器的计数值清零,并从0开始重新计数,否则将计数器的计数值加1。 当按键信号key等于3'b010时,如果计数器的计数值等于23(二进制数10111),则将计数器的计数值清零,并从0开始重新计数,否则将计数器的计数值加1。 当按键信号key等于3'b100时,如果计数器的计数值等于33(二进制数100001),则将计数器的计数值清零,并从0开始重新计数,否则将计数器的计数值加1。 如果按键信号key不匹配上述任何一种情况,则不执行任何操作,保留计数器的当前计数值。 这段代码的作用是实现计数器的计数功能,根据按键信号key的不同取值,对计数器的计数值进行加1、清零等操作,实现计数器的计数逻辑。同时,当计数器达到15或25时,会根据要求自动清零或停止计数。
相关问题

详细解释这段代码并告诉我如何更改正在工作的数码管module counter5_15_25( input clk, input rst, input [2:0] key, output reg [7:0] d_out ); always@(posedge clk or posedge rst) begin if(rst) begin d_out<= 8'd0; end else begin case( key ) 3'b001: if(d_out == 8'd4) d_out<= 8'd20; else d_out<= d_out + 1'b1; 3'b010: if(d_out == 8'd14) d_out<= 8'd20; else d_out<= d_out + 1'b1; 3'b100: if(d_out == 8'd24) d_out<= 8'd20; else d_out<= d_out + 1'b1; default: d_out<= d_out; endcase end end endmodule

这段代码是一个计数器模块,它能够根据输入的按键信号 key 来改变输出的数码管值 d_out。当 rst 信号为高电平时,d_out 被置为 0;当 clk 信号为上升沿时,根据 key 的不同值,d_out 的值会有相应的变化。如果 key 的值为 001,且 d_out 值为 4,则将 d_out 的值改为 20;如果 key 的值为 010,且 d_out 值为 14,则将 d_out 的值改为 20;如果 key 的值为 100,且 d_out 值为 24,则将 d_out 的值改为 20。如果 key 的值不属于上述三种情况,则 d_out 的值不变。要更改模块中的数值,可以修改赋值语句中的值,如修改 d_out<=8'd0; 为 d_out<=8'd1; 就能将初始值改为 1。

详细解释一下这段代码://sample all the data, no matte input or output or ack always @(posedge clk or negedge rst) if (~rst) sft<=9'h00; else if(scl_neg &&~|cnt)//data in: shift effective sample bit sft[8:0] <=9'h00; else if(scl_neg) begin sft[8:1]<=sft[7:0]; sft[0] <=hf; end //pull down the sda always(@posedge clk or negedge rst) if (~rst) read_out<=1'b1; else if (i2c_state==3'b000) read_out<=1'd1; else if (i2c_state==3'b001) case(cnt) 4'h1:read_out<= 1'b1; 4'h2:read_out<= 1'b1; 4'h3:read_out<= 1'b1; 4'h4:read_out<= 1'b1; 4'h5:read_out<= 1'b1; 4'h6:read_out<= 1'b1; 4'h7:read_out<= 1'b1; 4'h8:read_out<= 1'b1; 4'h9:read_out<= ~(sadr[6:0]==sft[7:1]); default:read_out <=1'd1; endcase else if (i2c_state == 3'b010 || i2c_state==3'b100 ) case(cnt) 4'h1:read_out <=1'b1; 4'h2:read_out <=1'b1; 4'h3:read_out <=1'b1; 4'h4:read_out <=1'b1; 4'h5:read_out <=1'b1; 4'h6:read_out <=1'b1; 4'h7:read_out <=1'b1; 4'h8:read_out <=1'b1; 4'h9:read_out <=1'd0; default: read out <=1'd1; endcase else if (i2c_state == 3'b011 ) begin if(rd_en) case(cnt) 4'h1:read_out <=data in_d1[7]; 4'h2:read_out <=data in_d1[6]; 4'h3:read_out <=data in_d1[5]; 4'h4:read_out <=data in_d1[4]; 4'h5:read_out <=data in_d1[3]; 4'h6:read_out <=data in_d1[2]; 4'h7:read_out <=data in_d1[1]; 4'h8:read_out <=data in_d1[0]; 4'h9:read_out <=1'd1; default:read_out <=1'd1; endcase else read_out <= 1'd1; end else read_out <= 1'd1; asssign sda_ oe =read_out; //this is pull down the sda

这段代码是一段 Verilog 代码,用于实现 I2C 总线中的数据传输和状态机控制。以下是代码的解释: 1. 第一段代码(第1行到第5行)是一个状态机的输出。它表示如果复位信号 rst 为高电平,则将变量 sft 重置为0,否则根据时钟信号 clk 和计数器 cnt 的值来更新 sft 的值,以便在数据传输过程中将有效位推入 sft 变量中。 2. 第二段代码(第7行到第25行)是在数据传输期间的读出控制。如果复位信号 rst 为高电平,则将变量 read_out 设置为1,否则根据当前 I2C 状态机的状态 i2c_state 和计数器 cnt 的值来控制变量 read_out 的值。在状态机处于地址传输状态时,变量 read_out 的值将取决于地址是否匹配。在状态机处于数据传输状态时,变量 read_out 的值将取决于是否需要读取数据或者是需要向外输出数据。最后,如果状态机处于非法状态,则变量 read_out 的值将设置为1。 3. 第三段代码(第27行)是将变量 read_out 的值传递给 sda_oe 信号,控制 I2C 总线上的 SDA 引脚是否为输出状态,用于数据的读写。

相关推荐

module cnt_6(CP,R,Q2,CO2); input CP,R; output CO2; output reg[2:0] Q2; assign CO2= Q2[0]&Q2[2]; always@(posedge CP or posedge R) begin if(R) begin Q2 <= 3'b0; end else begin case(Q2) 3'b000: Q2 <= 3'b001; 3'b001: Q2 <= 3'b010; 3'b010: Q2 <= 3'b011; 3'b011: Q2 <= 3'b100; 3'b100: Q2 <= 3'b101; 3'b101: Q2 <= 3'b000; default: Q2 <= 3'b000; endcase end end endmodulemodule cnt_10( input CP, // 时钟信号 input R, // 复位信号 output reg [3:0] Q1,// BCD码计数器输 output CO1 ); reg [3:0] Q1_next; // 下一个计数器值 assign CO1= Q1[0]&Q1[3]; always @(posedge CP or posedge R) begin if (R) begin Q1 <= 4'b0000; // 复位计数器 end else begin Q1 <= Q1_next; // 更新计数器值 end end always @(Q1) begin case (Q1) 4'b0000: Q1_next = 4'b0001; 4'b0001: Q1_next = 4'b0010; 4'b0010: Q1_next = 4'b0011; 4'b0011: Q1_next = 4'b0100; 4'b0100: Q1_next = 4'b0101; 4'b0101: Q1_next = 4'b0110; 4'b0110: Q1_next = 4'b0111; 4'b0111: Q1_next = 4'b1000; 4'b1000: Q1_next = 4'b1001; 4'b1001: Q1_next = 4'b0000; default: Q1_next = 4'b0000; endcase end endmodulemodule Clk_1Hz( input CP, // 100MHz时钟信号 input R, // 复位信号 output reg CP_out // 1Hz时钟信号 ); reg [31:0] count = 0; // 计数器,初始值为0 always @(posedge CP or posedge R) begin if (R) begin // 复位信号为高电平时,将计数器清零和时钟信号复位 count <= 0; CP_out <= 0; end else begin if (count == 100000000 - 1) begin // 计数器达到100000000时,产生一个时钟脉冲 count <= 0; CP_out <= ~CP_out; end else begin count <= count + 1; end end end endmodule请你通过实例化上面我给的三个子模块,利用Verilog设计一个60进制的秒表,可以将cnt_10的CO1传到cnt_6的时钟信号CP上,连接两个再设计这个秒表

给下面代码写个测试文件module fdiv10(clk,push,fdiv_10); input clk,push; output fdiv_10; reg[3:0]count10; always @(posedge clk,posedge push) begin if(push) count10<=count10; else if(count10<10) count10<=count10+1; else count10<=0; end assign fdiv_10=(count10==10)?1:0; endmodule module leds(clk,bcd1,bcd2,bcd3,bcd4,bcd5,bcd6,bcd7,bcd8,sel,a_g); input clk; input [3:0]bcd1,bcd2,bcd3,bcd4,bcd5,bcd6,bcd7,bcd8; output reg[2:0]sel; output reg[6:0]a_g; reg[3:0]temp; always @(posedge clk) begin sel<=sel+1; if(sel==5) sel<=0; end always @(sel) begin case(sel) 3'b000:temp<=bcd1; 3'b001:temp<=bcd2; 3'b010:temp<=bcd3; 3'b011:temp<=bcd4; 3'b100:temp<=bcd5; 3'b101:temp<=bcd6; 3'b110:temp<=bcd7; 3'b111:temp<=bcd8; default:temp<=bcd1; endcase case(temp) 0:a_g<=7'b1111110; //0 1:a_g<=7'b0110000; //1 2:a_g<=7'b1101101; //2 3:a_g<=7'b1111001; //3 4:a_g<=7'b0110011; //4 5:a_g<=7'b1011011; //5 6:a_g<=7'b1011111; //6 7:a_g<=7'b1110000; //7 8:a_g<=7'b1111111; //8 9:a_g<=7'b1111011; //9 default:a_g<=7'b1000111; //F endcase end endmodule module miaobiao(clk,clr,push,sel,a_g); input clk,clr,push; output[2:0]sel; output[6:0]a_g; wire push1,fdiv_10,clr1,cin2,cin4,cin6; wire[3:0]bcd1,bcd2,bcd3,bcd4,bcd5,bcd6,bcd7,bcd8; switch switchpush(clk,push,push1); switch switchclr(clk,clr,clr1); fdiv10 fdiv(clk,push1,fdiv_10); count100 count100(fdiv_10,clr1,bcd1,bcd2,cin2); count60_1 count60_1(cin2,clr1,bcd3,bcd4,cin4); count60_2 count60_2(cin4,clr1,bcd5,bcd6,cin6); count24 count24(cin6,clr1,bcd7,bcd8); leds leds(clk,bcd1,bcd2,bcd3,bcd4,bcd5,bcd6,bcd7,bcd8,sel,a_g); endmodule module switch(clk,keyin,keyout); input clk,keyin; output reg keyout; reg clk_use; reg[3:0]counter; always @(posedge clk) begin counter<=counter+1; if(counter==10) begin counter<=0; clk_use<=~clk_use; end end always @(posedge clk_use) keyout<=keyin; endmodule

改写一下这段代码,使得寄存器地址支持16bit读写,现在这段是只支持8bit读写://FSM always @ (posedge clk or negedge rst) if (~rst) i2c_state<=3'b000;//idle else i2c_state<= next_i2c_state; //////////Modified on 25 november.write Address is 30H; Read Address is 31H///// always @(i2c_state or stopf or startf or cnt or sft or sadr or hf or scl_neg or cnt) case(i2c_state) 3'b000: //This state is the initial state,idle state begin if (startf)next_i2c_state<= 3 b001;//start else next_i2c_state <= i2c_state; end 3b001://This state is the device address detect & trigger begin if(stopf)next_i2c_state<=3'b000; else begin if((cnt==4'h9)&&({sft[0],hf} ==2'b00) && (scl_neg ==1'b1)&&(sadr ==sft[7:1])) next i2c_ state<=3'b010;//write: i2c adderss is 00110000 and ACK is sampled //so {sft[0],hf} is 2'b00 else if ((cnt==4'h9)&&({sft[0],hf} ==2'b10) && (scl_neg ==1'b1)&&(sadr ==sft[7:1])) next i2c_ state<=3'b011;//read:i2c adderss is 00110001 and ACK is sampled //so {sft[0],hf} is 2'b10 else if((cnt ==4'h9) && (scl_neg == 1'b1)) next_ i2c_state<=3 'b000;//when the address accepted does not match the SADR, //the state comes back else next_i2c_state<=i2c_state; end end 3'b010: //This state is the register address detect &&trigger begin if (stopf)next_i2c_state<=3'b000; else if (startf)next_i2c_state<=3'b001; else if ((cnt ==4'h9) && (scl_neg == 1'b1)) next_i2c _state<=3'b10 else next i2c_state<=i2c_state; end 3'b011: //This state is the register data read begin if (stopf)next_i2c _state<=3'b000; else if (startf) next_i2c _state<=3'b001; else next_12c_state<=i2c_state; end 3'b100: //This state is the register data write begin if (stopf)next_i2c _state<=3'b000; else if (startf) next_i2c _state<=3b001; else next_i2c_state<=i2c_state; end default://safe mode control next_i2c_state <= 3'b000; endcase

最新推荐

recommend-type

rockyou.txt

rockyou
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB图像处理算法宝典:从理论到实战

![MATLAB图像处理算法宝典:从理论到实战](https://img-blog.csdnimg.cn/20200717112736401.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2d1emhhbzk5MDE=,size_16,color_FFFFFF,t_70) # 1. MATLAB图像处理基础理论 MATLAB图像处理是一种利用MATLAB编程语言进行图像处理的强大工具。它提供了丰富的函数和工具箱,用于图像获取、增强、分
recommend-type

matlab中1/x的非线性规划

在MATLAB中,可以使用非线性规划函数(`fmincon`)来优化一个包含1/x的非线性目标函数。下面是一个简单的例子: ```matlab % 定义目标函数 fun = @(x) 1/x; % 定义约束函数(这里没有约束) nonlcon = []; % 定义初始点 x0 = 1; % 定义优化选项 options = optimoptions('fmincon', 'Display', 'iter'); % 进行非线性规划 [x, fval] = fmincon(fun, x0, [], [], [], [], [], [], nonlcon, options); ``` 在
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB数据可视化黑科技:洞悉数据背后的秘密

![MATLAB数据可视化黑科技:洞悉数据背后的秘密](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB数据可视化的基本原理 MATLAB数据可视化是一种将数据转化为图形表示形式的技术,以帮助人们理解和分析数据。其基本原理包括: - **数据表示:**将原始数据转换为图形元素,如点、线和条形。 - **图形布局:**确定图形元素在绘图区域中的位置和大小。 - **图形美化:**添加标题、标签、颜色和纹理等元素,以增强图形的可读性和美观性。 - **交互性:**允
recommend-type

优化算法计算单位面积年平均输出热功率的代码

计算单位面积年平均输出热功率的代码具体情况取决于你所要解决的问题和需要的数据。然而,我可以给你一个通用的优化算法的框架,你可以根据具体情况进行调整。 首先,你需要明确计算单位面积年平均输出热功率的数学公式或算法。假设你已经有了计算热功率的函数 `calculate_power`,它接受一些输入参数,并返回热功率值。 下面是一个示例的优化算法框架,以最大化单位面积年平均输出热功率为目标: ```python import random def objective_function(params): # 这个函数用于计算目标函数的值 # 根据具体情况,你需要将 params
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。