np.diag(-np.ones(4))
时间: 2023-09-07 07:14:50 浏览: 158
`np.diag` 是 NumPy 库中的一个函数,用于创建一个对角矩阵或从一个数组中获取对角线元素。当传递一个一维数组时,`np.diag` 会返回一个对角矩阵,对角线上的元素为传递的一维数组的元素。当传递一个二维数组时,`np.diag` 会返回一个包含该数组对角线元素的一维数组。
在你提供的代码中,`np.diag(-np.ones(4))` 将会返回一个 4x4 的对角矩阵,对角线上的元素为 -1。具体来说,`-np.ones(4)` 会创建一个长度为 4 的一维数组,数组中的每个元素都是 -1。然后,`np.diag` 函数将这个一维数组转换为一个 4x4 的对角矩阵,对角线上的元素为 -1。因此,`np.diag(-np.ones(4))` 将会返回以下矩阵:
```
[[-1. 0. 0. 0.]
[ 0. -1. 0. 0.]
[ 0. 0. -1. 0.]
[ 0. 0. 0. -1.]]
```
相关问题
翻译代码 P = matrix(np.diag(np.append(b_real, d_real))) q = matrix(np.append(alpha, c_real)) G = matrix(np.vstack((J, -J, np.diag(-np.ones(4)), np.diag(np.ones(4))))) h = matrix(np.hstack((J_max, -p_min, -q_min, p_max, q_max))) A = matrix(np.hstack((-np.ones(2), np.ones(2)))).T b = matrix(0.0)
这段代码是利用Python的NumPy和CVXOPT库构建一个二次规划问题的矩阵形式,其中变量P为对角矩阵,q为向量,G和h为不等式约束矩阵和向量,A和b为等式约束矩阵和向量。具体来说,P的对角线上有两个向量b_real和d_real,q由alpha和另一个向量c_real组成,J是一个4x2的矩阵,J_max、p_min、q_min、p_max和q_max都是长度为4的向量。A是一个2x4的矩阵,b为标量0.0。
翻译代码import numpy as np from cvxopt import matrix, solvers solvers.options['show_progress'] = False # 市场出清,考虑网络阻塞 def market_clearing(alpha): # 供给曲线的截距和斜率 a_real = np.array([15.0, 18.0]) b_real = np.array([0.01, 0.008]) # 需求曲线的截距和斜率 c_real = np.array([40.0, 40.0]) * -1 d_real = np.array([0.08, 0.06]) # 机组功率上下限 p_min = np.array([0.0, 0.0]) p_max = np.array([500.0, 500.0]) # 负荷需求上下限 q_min = np.zeros(2) q_max = np.array([500.0, 666.666666666667]) J_g = ([[-0.333333333333333, -0.333333333333333, -0.666666666666667], [0.333333333333334, -0.666666666666667, -0.333333333333333], [0, 0, 0]]) J = np.array([[-0.333333333333333, 0.0, 0.333333333333333, -0.333333333333334], [-0.333333333333333, 0.0, 0.333333333333333, 0.666666666666667], [-0.666666666666667, 0.0, 0.666666666666667, 0.333333333333333]]) J_max = np.array([25.0, 1000.0, 1000.0, 25.0, 1000.0, 1000.0]) P = matrix(np.diag(np.append(b_real, d_real))) q = matrix(np.append(alpha, c_real)) G = matrix(np.vstack((J, -J, np.diag(-np.ones(4)), np.diag(np.ones(4))))) h = matrix(np.hstack((J_max, -p_min, -q_min, p_max, q_max))) A = matrix(np.hstack((-np.ones(2), np.ones(2)))).T b = matrix(0.0) sv = solvers.qp(P, q, G, h, A, b) miu1 = sv['z'][0:3] miu2 = sv['z'][3:6] nodal_price = (np.ones((3, 1)) * sv['y'][0] - np.dot(J_g, miu1 - miu2)).squeeze() nodal_price_g = np.array([nodal_price[0], nodal_price[2]]) mc_amount = np.array(sv['x'][:2]).squeeze() cost_real = 0.5 * b_real * mc_amount ** 2 + a_real * mc_amount cost_declare = mc_amount * np.transpose(nodal_price_g) profit = cost_declare - cost_real return nodal_price_g, profit if __name__ == '__main__': alpha = np.array([20.29, 22.98]) print(market_clearing(alpha))
这段代码实现了一个市场出清的过程,用于计算电力市场中的供需关系和市场价格。具体来说,代码中有以下几个重要的变量和参数:
- a_real和b_real:表示供给曲线的截距和斜率,是一个长度为2的数组。
- c_real和d_real:表示需求曲线的截距和斜率,同样是一个长度为2的数组。
- p_min和p_max:表示机组功率的上下限,也是一个长度为2的数组。
- q_min和q_max:表示负荷需求的上下限,同样是一个长度为2的数组。
- J_g、J和J_max:都是用于计算市场价格的矩阵或数组。
- alpha:是一个长度为2的数组,表示供给和需求量的差异。
代码中使用了cvxopt库中的qp函数,通过定义P、q、G、h、A和b等矩阵,来求解最优化问题,得到了供给量和需求量的均衡点。最后,通过计算市场价格和成本等,得到了节点价格和利润的结果,并将其返回。
在主函数中,代码对market_clearing函数进行了测试,并输出了结果。
阅读全文