if self.conv_layers is not None: for attn_layer, conv_layer in zip(self.attn_layers, self.conv_layers): # 遍历注意力架构层 x, attn = attn_layer(x, attn_mask=attn_mask) # 对x做maxpool1d操作,将512-->256 # 也就是结构中的金字塔,为了加速模型训练提出 x = conv_layer(x) attns.append(attn) # # 遍历注意力架构层 x, attn = self.attn_layers[-1](x, attn_mask=attn_mask) attns.append(attn) else: for attn_layer in self.attn_layers: x, attn = attn_layer(x, attn_mask=attn_mask) attns.append(attn)
时间: 2024-04-10 12:31:25 浏览: 114
对tensorflow中tf.nn.conv1d和layers.conv1d的区别详解
这段代码是一个条件语句,用于根据`self.conv_layers`是否为`None`来选择不同的分支执行。
如果`self.conv_layers`不为`None`,则会进入第一个分支。在这个分支中,代码首先通过`zip`函数将`self.attn_layers`和`self.conv_layers`两个列表进行遍历,将对应的元素分别赋值给`attn_layer`和`conv_layer`。然后,代码使用`attn_layer`对输入`x`进行处理,并传入`attn_mask`作为参数,得到处理后的结果`x`和注意力分布`attn`。接着,代码将`x`传入`conv_layer`做`maxpool1d`操作,将维度从512减少到256。最后,将注意力分布`attn`添加到列表`attns`中。
如果`self.conv_layers`为`None`,则会进入第二个分支。在这个分支中,代码只遍历了`self.attn_layers`列表,并依次使用每个注意力层对输入进行处理,得到处理后的结果`x`和注意力分布`attn`,并将注意力分布`attn`添加到列表`attns`中。
无论进入哪个分支,最后都会再次使用最后一个注意力层对结果`x`进行处理,并将注意力分布添加到列表`attns`中。整个过程中,注意力分布的收集是为了后续的可视化或其他用途。
阅读全文