assert img.shape[2] == 3
时间: 2024-06-06 12:07:45 浏览: 123
This line of code is checking if the third dimension of the image array is equal to 3. This is because a standard RGB image has three color channels: red, green, and blue. If the third dimension is not equal to 3, it means that the image is not a standard RGB image and may have a different number of color channels or be in a different color space.
相关问题
for filename in calib_files: img = self.imread(filename) if img is None: raise FileNotFoundError(filename, "没有发现!") if len(img.shape) == 2: gray = img else: gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) if self.img_size is None: self.img_size = gray.shape[::-1] else: assert gray.shape[::-1] == self.img_size
这段代码使用了一个for循环遍历calib_files中的每个文件名,并进行以下操作:
1. 调用self.imread函数读取文件,并将结果赋值给img变量。
2. 如果img为空,即读取文件失败,则抛出FileNotFoundError异常。
3. 如果img是二维的(即灰度图像),则将其赋值给gray变量。
4. 如果img是三维的(即彩色图像),则将其转换为灰度图像,并将结果赋值给gray变量。
5. 如果self.img_size为None,则将gray的shape取反(即高度和宽度交换)作为img_size。
6. 如果self.img_size不为None,则使用assert语句检查gray的shape取反是否等于img_size。如果不等于,则抛出AssertionError异常。
这段代码的作用是读取一组图像文件,并将它们转换为相同大小的灰度图像。如果读取文件失败或者图像大小不一致,则会抛出异常。
class PrototypicalCalibrationBlock: def __init__(self, cfg): super().__init__() self.cfg = cfg self.device = torch.device(cfg.MODEL.DEVICE) self.alpha = self.cfg.TEST.PCB_ALPHA self.imagenet_model = self.build_model() self.dataloader = build_detection_test_loader(self.cfg, self.cfg.DATASETS.TRAIN[0]) self.roi_pooler = ROIPooler(output_size=(1, 1), scales=(1 / 32,), sampling_ratio=(0), pooler_type="ROIAlignV2") self.prototypes = self.build_prototypes() self.exclude_cls = self.clsid_filter() def build_model(self): logger.info("Loading ImageNet Pre-train Model from {}".format(self.cfg.TEST.PCB_MODELPATH)) if self.cfg.TEST.PCB_MODELTYPE == 'resnet': imagenet_model = resnet101() else: raise NotImplementedError state_dict = torch.load(self.cfg.TEST.PCB_MODELPATH) imagenet_model.load_state_dict(state_dict) imagenet_model = imagenet_model.to(self.device) imagenet_model.eval() return imagenet_model def build_prototypes(self): all_features, all_labels = [], [] for index in range(len(self.dataloader.dataset)): inputs = [self.dataloader.dataset[index]] assert len(inputs) == 1 # load support images and gt-boxes img = cv2.imread(inputs[0]['file_name']) # BGR img_h, img_w = img.shape[0], img.shape[1] ratio = img_h / inputs[0]['instances'].image_size[0] inputs[0]['instances'].gt_boxes.tensor = inputs[0]['instances'].gt_boxes.tensor * ratio boxes = [x["instances"].gt_boxes.to(self.device) for x in inputs] # extract roi features features = self.extract_roi_features(img, boxes) all_features.append(features.cpu().data) gt_classes = [x['instances'].gt_classes for x in inputs] all_labels.append(gt_classes[0].cpu().data)
这段代码是一个名为PrototypicalCalibrationBlock的类的定义,它包含了一些方法和属性。__init__方法接受一个cfg参数,用来初始化一些属性。其中包括设备类型、alpha值、预训练模型、数据加载器、RoI池化器和类别原型等。build_model方法用于加载ImageNet预训练模型,支持resnet101模型。build_prototypes方法用于提取RoI特征和类别标签,并将其存储为特征向量和类别原型。这个类的作用是在目标检测任务上进行模型校准。
阅读全文