nn.Linear 输入必须定义么
时间: 2023-06-25 15:05:07 浏览: 72
是的,nn.Linear 的输入必须定义。它需要两个参数,第一个是输入特征的数量,第二个是输出特征的数量。例如,如果你想将一个大小为 (batch_size, input_size) 的输入张量传递到一个线性层中,该层将产生一个大小为 (batch_size, output_size) 的输出张量,代码如下:
```
import torch.nn as nn
input_size = 10
output_size = 5
batch_size = 32
linear_layer = nn.Linear(input_size, output_size)
input_tensor = torch.randn(batch_size, input_size)
output_tensor = linear_layer(input_tensor)
print(output_tensor.size()) # 输出: torch.Size([32, 5])
```
相关问题
if self.liu: self.dropout = nn.Dropout(0.5) self.branch2 = nn.Linear(512 * block.expansion, 256) self.classifier1 = nn.Linear(512 * block.expansion+256, self.num_classes) self.classifier2 = nn.Linear(256, 3) elif self.chen: self.dropout = nn.Dropout(0.5) self.fc_out = nn.Linear(512 * block.expansion, 1024) self.classifier1_1 = nn.Linear(1024, 256) self.classifier1_2 = nn.Linear(256, 128) self.classifier1_3 = nn.Linear(128, self.num_classes) self.classifier2_1 = nn.Linear(1024, 256) self.classifier2_2 = nn.Linear(256, 128) self.classifier2_3 = nn.Linear(128, 3)
这段代码是什么意思?
这段代码是一个类中的初始化方法,其中包含了两个条件判断。如果 self.liu 的值为 True,就会执行第一个条件判断下面的代码块,其中定义了一个丢弃层、一个全连接层和两个分类器。这些层用于将输入的特征图进行分类,其中丢弃层用于防止过拟合。如果 self.chen 的值为 True,就会执行第二个条件判断下面的代码块,其中定义了一个丢弃层、一个全连接层和六个分类器。这些层同样用于将输入的特征图进行分类,其中全连接层用于将特征图进行压缩,分类器用于进行分类。这里的self.num_classes表示分类的类别数。
self.net = nn.Sequential( nn.Linear(input_dim, 256), nn.ReLU(), nn.Linear(256, 128), nn.ReLU(), nn.Linear(128, 64), nn.ReLU(), nn.Linear(64, 1), )
您给出的代码定义了一个神经网络的结构。这个网络有4个线性层(linear layers),每个线性层后面都跟着一个ReLU激活函数(rectified linear unit)。
输入层的维度是input_dim,输出层的维度是1。其中,第一个线性层的输入维度是input_dim,输出维度是256。第二个线性层的输入维度是256,输出维度是128。第三个线性层的输入维度是128,输出维度是64。第四个线性层的输入维度是64,输出维度是1。
这个网络的作用是将输入数据通过一系列线性变换和非线性变换映射到一个单一的输出值。每个线性层都会将输入数据进行线性变换,而ReLU激活函数则会引入非线性,使得网络能够学习更加复杂的模式和特征。
希望这个回答能帮到您!如果您有任何其他问题,请随时提问。
阅读全文