# 全连接层 self.fc = nn.Sequential( nn.Dropout(p=0.2), nn.Linear(256*6*6, 4096), nn.RReLU(inplace=True), nn.Dropout(p=0.5), nn.Linear(4096, 1024), nn.RReLU(inplace=True), nn.Linear(1024, 256), nn.RReLU(inplace=True), nn.Linear(256, 7) )
时间: 2024-04-18 15:23:46 浏览: 117
这段代码定义了一个包含多个全连接层的神经网络模型。具体来说,模型的结构如下:
1. 输入数据经过一个 Dropout 层,该层的作用是随机地将输入元素设置为0,以减少过拟合的风险。
2. 经过一个全连接层,该层将输入特征展平为一维向量,并将其映射到一个4096维的特征空间。
3. 使用 RReLU 激活函数对全连接层的输出进行非线性变换。
4. 再次应用 Dropout 层,以减少过拟合。
5. 经过另一个全连接层,将输入映射到1024维的特征空间。
6. 再次使用 RReLU 激活函数进行非线性变换。
7. 经过最后一个全连接层,将输入映射到256维的特征空间。
8. 使用 RReLU 激活函数进行非线性变换。
9. 最后一个全连接层将输入映射到7维的输出空间,该空间表示7个类别的预测结果。
在训练过程中,这些全连接层会根据预先定义的权重进行前向传播和反向传播,并且在每个层之间应用 RReLU 激活函数。这样可以通过网络学习输入数据的特征表示,并生成对应于不同类别的预测结果。
请注意,代码中的 Dropout 层和 RReLU 激活函数都是用于正则化和引入非线性变换的常用技术,以提高模型的性能和泛化能力。
相关问题
import torch import torch.nn as nn import torch.nn.functional as F from torch.utils.data import Dataset, DataLoader from sklearn.metrics import accuracy_score import jieba from CLDNN2 import CLDNN from CLDNNtest import CLDNNtest # 定义超参数 MAX_LENGTH = 100 # 输入序列的最大长度 VOCAB_SIZE = 35091 # 词汇表大小 EMBEDDING_SIZE = 128 # 词向量的维度 NUM_FILTERS = 100 # 卷积核数量 FILTER_SIZES = [2, 3, 4] # 卷积核尺寸 class SentimentDataset(Dataset): def __init__(self, texts, labels): self.texts = texts self.labels = labels def __len__(self): return len(self.texts) def __getitem__(self, index): text = self.texts[index] label = self.labels[index] return text, label class CNNClassifier(nn.Module): def __init__(self, vocab_size, embedding_size, num_filters, filter_sizes, output_size, dropout): super().__init__() self.embedding = nn.Embedding(vocab_size, embedding_size) # self.convs = nn.ModuleList([ # nn.Conv2d(1, num_filters, (fs, embedding_size)) for fs in filter_sizes # ]) self.convs = nn.Sequential( nn.Conv2d(1, num_filters, (2, 2)), # nn.MaxPool2d(2), nn.ReLU(inplace=True), nn.Conv2d(num_filters, num_filters, (3, 3)), nn.ReLU(inplace=True), nn.Conv2d(num_filters, num_filters, (4, 4)), nn.MaxPool2d(2), nn.ReLU(inplace=True), nn.Dropout(dropout) ) self.fc = nn.Sequential( nn.Linear(286700, 300), nn.Linear(300, output_size) ) # self.dropout = nn.Dropout(dropout) def forward(self, text): # text: batch_size * seq_len embedded = self.embedding(text) # batch_size * seq_len * embedding_size # print(embedded.shape) embedded = embedded.unsqueeze(1) # batch_size * 1 * seq_len * embedding_size x = self.convs(embedded) print(x.shape) # print(embedded.shape) # conved = [F.relu(conv(embedded)).squeeze(3)
这段代码实现了一个使用卷积神经网络(CNN)进行文本分类的模型。具体来说,它包括数据集的定义、模型的定义和前向传播的实现。
其中,数据集的定义使用了 PyTorch 中的 Dataset 类,用于封装输入文本和对应的标签。模型的定义使用了 PyTorch 中的 nn.Module 类,包括了词嵌入层、卷积层和全连接层。前向传播的实现包括了将输入文本进行词嵌入、进行卷积操作、进行池化操作和进行最终的分类。
需要注意的是,这段代码中使用了中文分词工具 jieba 进行分词,使用了 CLDNN 和 CLDNNtest 两个自定义模块,以及一些超参数,如最大序列长度、词汇表大小、词向量维度、卷积核数量、卷积核尺寸等。
self.layer1 = nn.Sequential( nn.Conv1d(1, 4, kernel_size=3, padding=1), nn.BatchNorm1d(4), nn.ReLU()) self.layer2 = nn.Sequential( nn.Conv1d(4, 8, kernel_size=3, padding=1), nn.BatchNorm1d(8), nn.ReLU()) self.layer3 = nn.Sequential( nn.Conv1d(8, 8, kernel_size=3, padding=1), nn.BatchNorm1d(8), nn.ReLU()) #nn.Dropout(p=dropout), #nn.MaxPool1d(2)) self.layer4 = nn.Sequential( nn.Conv1d(16, 32, kernel_size=3, padding=1), nn.BatchNorm1d(32), nn.ReLU(), nn.Dropout(p=dropout), nn.MaxPool1d(2)) self.conv_last = nn.Conv1d(8, 1, kernel_size=1, padding=0) self.fc = nn.Linear(10, 1) #self.gamma = torch.nn.Parameter(torch.zeros(1))
这些代码定义了一个名为`CNN`的神经网络类,这个类继承自PyTorch的`nn.Module`类。这个类包含了四个卷积层和一个全连接层。
- `layer1`是一个由三个子层组成的序列,它的输入大小为`(batch_size, 1, seq_len)`,输出大小为`(batch_size, 4, seq_len)`。
- `layer2`是一个由三个子层组成的序列,它的输入大小为`(batch_size, 4, seq_len)`,输出大小为`(batch_size, 8, seq_len)`。
- `layer3`是一个由三个子层组成的序列,它的输入大小为`(batch_size, 8, seq_len)`,输出大小为`(batch_size, 8, seq_len)`。
- `layer4`是一个由四个子层组成的序列,它的输入大小为`(batch_size, 16, seq_len)`,输出大小为`(batch_size, 32, seq_len/2)`。
这些卷积层的输出都是1维张量。其中,`nn.Conv1d`表示1维卷积层,`nn.BatchNorm1d`表示1维批量归一化层,`nn.ReLU`表示ReLU激活函数层,`nn.Dropout`表示随机失活层,`nn.MaxPool1d`表示1维最大池化层。这些层的作用分别是提取特征、标准化特征、引入非线性、随机失活以防止过拟合和下采样。
接下来,`conv_last`定义了一个1维卷积层,它的输入大小为`(batch_size, 8, seq_len/2)`,输出大小为`(batch_size, 1, seq_len/2)`。这个层用于将卷积层的输出转化为一个单一的值。
最后,`fc`定义了一个全连接层,它的输入大小为10,输出大小为1。`gamma`是一个可学习的参数,用于控制模型的输出。
阅读全文