clear; m=500000; %总质量 co=4500; cv=150; %%%%%%%%%%chen ca=1; g=9.8; center1=-1.5:0.1:1.5; center=[center1;center1]; % 神经网络中心 width=2; % 神经网络宽度 % rbfc=3000*ones(31,1); % 神经网络加权矩阵 % kesi=0.008; kesi0=0.01; %dd=500; deta0=0.001; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%调节参数 ro=1; rv=1; ra=1; rm=1; r2=1; gama=1*eye(31); roo=1; ww=1; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%初值 z1=0.1; z2=0.1*10^6; v_max=0.5*10^6; % v_max=0.7*10^6; v_min=-0.5*10^6; aa=1; % ks=1000000; % lambda1_0=0.9; % lambda2_0=0.01; ts=1; TT=2000; iter=TT/ts; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%参考位移、速度、加速度 xd=zeros(1,iter); dxd=zeros(1,iter); ddxd=zeros(1,iter); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%系统状态:实际位移和速度 x=zeros(2,iter); x_0=[5;0]; e=zeros(2,iter); lambda1=zeros(1,iter); lambda2=zeros(1,iter); mm=zeros(1,iter); xx=zeros(1,iter); ss=zeros(1,iter); %%%hat{s} s=zeros(1,iter); s1=zeros(1,iter); s1_0=0; u=zeros(1,iter); u1=zeros(1,iter); uc=zeros(1,iter); h=zeros(31,iter); dd1=zeros(1,iter); dd=zeros(1,iter); we=zeros(1,iter); time=zeros(1,iter); h_co=zeros(1,iter); %h_co_0=0; h_cv=zeros(1,iter); %h_cv_0=0; h_ca=zeros(1,iter); %h_ca_0=0; h_rbfc=zeros(31,iter); %h_rbfc_0=zeros(31,1); h_kesi0=zeros(1,iter); %h_kesi0_0=0; h_m=zeros(1,iter); %h_m_0=0; h_o=zeros(1,iter); %h_o_0=0; %E=rand(); E=0.8; for k=1:iter time(k)=k*ts; h_co_0=4200;h_cv_0=120;h_ca_0=0.9;h_rbfc_0=zeros(31,1);h_kesi0_0=0;h_m_0=1;h_o_0=0; time_points=0:TT/40:TT; velocity_points=[0, 6, 12, 17, 22, 27, 32, 37, 41, 45,... 48, 51, 54, 57, 60, 62.5, 62.5, 62.5, 62.5, 61.5,... 62.2, 62.4, 62.4, 62.5, 60, 57, 54, 51, 48, 47,... 45, 40, 35, 30, 28, 26, 24, 22, 19, 10, 0]; dxd(k)=interp1(time_points,velocity_points,time(k),'spline'); xd(k)=sum(dxd(1:k)); if k<2 ddxd(k)=0; else ddxd(k)=(dxd(k)-dxd(k-1))/ts; end
时间: 2024-04-29 19:21:04 浏览: 85
这是一段 Matlab 代码,可以看出是在进行仿真计算。其中定义了一些变量和参数,包括神经网络中心、宽度、加权矩阵等,以及参考位移、速度和加速度等。在主循环中,根据参考速度生成实际速度,并计算出加速度和位移。同时,还有一些变量用于记录仿真过程中的状态和结果,如 lambda1、lambda2、mm、xx、s、u 等。
相关问题
clc; clear; m=500000; %总质量 co=4500; cv=150; %%%%%%%%%%chen ca=1; g=9.8; center1=-1.5:0.1:1.5; center=[center1;center1]; % 神经网络中心 width=2; % 神经网络宽度 % rbfc=3000*ones(31,1); % 神经网络加权矩阵 % kesi=0.008; kesi0=0.01; %dd=500; deta0=0.001; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%调节参数 ro=1; rv=1; ra=1; rm=1; r2=1; gama=1*eye(31); roo=1; ww=1; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%初值 z1=0.1; z2=0.1*10^6; v_max=0.5*10^6; % v_max=0.7*10^6; v_min=-0.5*10^6; aa=1;
这段代码是一个MATLAB程序的开头部分,主要包括了清空变量、设置初始值、定义一些常数等内容。具体来说:
- clc和clear语句用于清空命令窗口和工作空间中的变量。
- m表示系统的总质量,co、cv和ca分别表示系统的热容、容积和压缩系数。
- g表示重力加速度,center1是一个向量,表示神经网络中心的初始值。
- center是一个2行31列的矩阵,表示神经网络中心的初始值。
- width表示神经网络的宽度,rbfc是一个31行1列的向量,表示神经网络加权矩阵的初始值。
- kesi、kesi0、deta0等变量是一些调节参数,用于控制程序的运行效果。
- ro、rv、ra、rm、r2、gama、roo、ww等变量也是一些常数,用于计算系统的物理量。
- z1、z2等变量是一些初始值,用于进行仿真计算。
- v_max和v_min分别表示系统速度的最大值和最小值,aa是一个常数,用于计算系统的加速度。
需要注意的是,这段代码只是程序的开头部分,具体的仿真计算过程可能在后续的代码中实现。
clc,clear w=2.2143 %波浪频率 M=4866 %浮子质量 m=2433 %振子质量 k=80000 %弹簧刚度 l=0.5 %弹簧原长 b=167.8395 %垂荡兴波阻尼系数 rho=1025 %海水密度 g=9.8 %重力加速度 f=4890 %垂荡激励力振幅 R=1 %浮子半径 S=pi*R^2 %浮子投影底面积 mm=1165.992 %垂荡附加质量 h=0.8 %圆锥的高 F0=rho*g*(1/3*pi*R^2*h); %圆锥部分所受浮力 d=((m+M)*g-F0)/(rho*g*S); %平衡状态下圆柱部分浸水深度 x0=m*g/k; %弹簧初始压缩量 f1=-w^2*A*(M-mm)*cos(w*t+phi2)-f*cos(w*t)+M*g+k*x0-2*A*k*sin(w*t+(phi1+phi2)/2)*sin(phi2-phi1)-b*w*A*sin(w*t+phi2)-2*beta*w*A*cos(w*t+(phi1+phi2)/2)*sin((phi2-phi1)/2)-F0-rho*g*S*d+A*rho*g*S*A*cos(w*t+phi2); f2=k*x0-2*A*k*sin(w*t+(phi1+phi2)/2)*sin(phi2-phi1)-m*g-2*beta*w*A*cos(w*t+(phi1+phi2)/2)*sin((phi2-phi1)/2)+m*w^2*A*cos(w*t+phi1); f3=t-100; t>100; beta>0&beta<10000 P=2*beta*w^2*A^2*(sin((phi1-phi2)/2))^2;求利用matlab编程求P的最大值
根据给出的代码,我们可以看到 `P` 是一个与变量 `A`、`phi1` 和 `phi2` 相关的函数。为了求解 `P` 的最大值,我们可以使用 MATLAB 的优化工具箱中的函数 fmincon。
以下是使用 MATLAB 编程求解 `P` 的最大值的代码示例:
```matlab
% 定义目标函数
f = @(x) -2*x(1)^2*x(2)^2*(sin((x(3)-x(4))/2))^2;
% 定义约束条件
nonlcon = @(x) deal([], [x(2)-10000; x(2); x(3); x(4)]);
% 定义初始点
x0 = [1; 1; 1; 1];
% 定义变量的上下界
lb = [0; -Inf; -Inf; -Inf];
ub = [Inf; Inf; Inf; Inf];
% 使用 fmincon 函数求解最大值问题
options = optimoptions('fmincon', 'Display', 'iter');
[x_opt, f_opt] = fmincon(f, x0, [], [], [], [], lb, ub, nonlcon, options);
% 输出结果
fprintf('Optimal solution:\n');
fprintf('A = %.4f\n', x_opt(1));
fprintf('phi1 = %.4f\n', x_opt(2));
fprintf('phi2 = %.4f\n', x_opt(3));
fprintf('Maximum value of P: %.4f\n', -f_opt);
```
在上述代码中,我们定义了目标函数 `f` 和约束条件 `nonlcon`。初始点 `x0` 和变量的上下界 `lb` 和 `ub` 需要根据实际情况进行设置。然后,使用 `fmincon` 函数求解最大值问题,并输出结果。
希望这可以帮助到你!
阅读全文