clear BorderLength=100; % NodeAmount=100; % BeaconAmount=8; % UNAmount=NodeAmount-BeaconAmount; % R=50; % h=zeros(NodeAmount,NodeAmount);% X=zeros(2,UNAmount);% 注释代码
时间: 2023-08-03 20:07:16 浏览: 144
这段代码是在MATLAB环境下编写的,对一些变量进行了初始化。具体说明如下:
- BorderLength:边界长度,值为100。
- NodeAmount:节点总数,值为100。
- BeaconAmount:信标节点数量,值为8。
- UNAmount:非信标节点数量,即未知节点数量,值为92(NodeAmount-BeaconAmount)。
- R:信标节点的通信范围,值为50。
- h:一个100x100的矩阵,用于存储节点之间的距离。
- X:一个2x92的矩阵,用于存储非信标节点的坐标。
- 注释代码:对代码中的注释进行了说明。
相关问题
解释下面的代码clear BorderLength=100; % NodeAmount=100; % BeaconAmount=8; % UNAmount=NodeAmount-BeaconAmount; % R=50; % h=zeros(NodeAmount,NodeAmount);% X=zeros(2,UNAmount);% C=BorderLength.*rand(2,NodeAmount); % Sxy=[[1:NodeAmount];C]; Beacon=[Sxy(2,1:BeaconAmount);Sxy(3,1:BeaconAmount)];% UN=[Sxy(2,(BeaconAmount+1):NodeAmount);Sxy(3,(BeaconAmount+1):NodeAmount)];% plot(Sxy(2,1:BeaconAmount),Sxy(3,1:BeaconAmount),'r*',Sxy(2,(BeaconAmount+1):NodeAmount),Sxy(3,(BeaconAmount+1):NodeAmount),'k.') % xlim([0,BorderLength]); ylim([0,BorderLength]); title('* 红色信标节点 . 黑色未知节点') for i=1:NodeAmount % for j=1:NodeAmount Dall(i,j)=((Sxy(2,i)-Sxy(2,j))^2+(Sxy(3,i)-Sxy(3,j))^2)^0.5;% if (Dall(i,j)<=R)&(Dall(i,j)>0) h(i,j)=1;% elseif i==j h(i,j)=0; else h(i,j)=inf; end end end for k=1:NodeAmount % for i=1:NodeAmount for j=1:NodeAmount if h(i,k)+h(k,j)<h(i,j) h(i,j)=h(i,k)+h(k,j); end end end end h1=h(1:BeaconAmount,1:BeaconAmount); % D1=Dall(1:BeaconAmount,1:BeaconAmount); for i=1:BeaconAmount dhop(i,1)=sum(D1(i,:))/sum(h1(i,:));% end D2=Dall(1:BeaconAmount,(BeaconAmount+1):NodeAmount);% for i=1:BeaconAmount for j=1:UNAmount if min(D2(:,j))==D2(i,j) Dhop(1,j)=D2(i,j);% end end end hop1=h(1:BeaconAmount,(BeaconAmount+1):NodeAmount);% for i=1:UNAmount % hop=Dhop(1,i); Distance(:,i)=hop*hop1(:,i); end d=Distance; % for i=1:2 % for j=1:(BeaconAmount-1) a(i,j)=Beacon(i,j)-Beacon(i,BeaconAmount); end end A=-2*(a'); for m=1:UNAmount % for i=1:(BeaconAmount-1) B(i,1)=d(i,m)^2-d(BeaconAmount,m)^2-Beacon(1,i)^2+Beacon(1,BeaconAmount)^2-Beacon(2,i)^2+Beacon(2,BeaconAmount)^2; end X1=inv(A'*A)*A'*B; X(1,m)=X1(1,1); X(2,m)=X1(2,1); end for i=1:UNAmount % error(1,i)=(((X(1,i)-UN(1,i))^2+(X(2,i)-UN(2,i))^2)^0.5); end figure;plot(error,'-o') title('每个未知节点的误差') error=sum(error)/UNAmount % Accuracy=error/R %
这段代码实现了一个基于距离测量的定位算法,其中包括如下步骤:
1. 定义节点数量、信标节点数量、未知节点数量、边界长度、通信半径等参数。
2. 随机生成所有节点的坐标,并将信标节点和未知节点分别存储在不同的数组中。
3. 计算所有节点之间的距离,并根据通信半径将节点间距离矩阵转化为邻接矩阵。
4. 利用 Floyd 算法计算任意两个节点之间的最短距离。
5. 根据信标节点和未知节点之间的距离以及信标节点之间的距离,计算未知节点的位置。
6. 计算定位误差和定位精度。
其中比较重要的代码包括:
- 计算节点间距离并转化为邻接矩阵
```matlab
for i=1:NodeAmount
for j=1:NodeAmount
Dall(i,j)=((Sxy(2,i)-Sxy(2,j))^2+(Sxy(3,i)-Sxy(3,j))^2)^0.5;
if (Dall(i,j)<=R)&(Dall(i,j)>0)
h(i,j)=1;
elseif i==j
h(i,j)=0;
else
h(i,j)=inf;
end
end
end
```
- Floyd 算法
```matlab
for k=1:NodeAmount
for i=1:NodeAmount
for j=1:NodeAmount
if h(i,k)+h(k,j)<h(i,j)
h(i,j)=h(i,k)+h(k,j);
end
end
end
end
```
- 计算未知节点位置
```matlab
for m=1:UNAmount
for i=1:(BeaconAmount-1)
B(i,1)=d(i,m)^2-d(BeaconAmount,m)^2-Beacon(1,i)^2+Beacon(1,BeaconAmount)^2-Beacon(2,i)^2+Beacon(2,BeaconAmount)^2;
end
X1=inv(A'*A)*A'*B;
X(1,m)=X1(1,1);
X(2,m)=X1(2,1);
end
```
- 计算定位误差和定位精度
```matlab
for i=1:UNAmount
error(1,i)=(((X(1,i)-UN(1,i))^2+(X(2,i)-UN(2,i))^2)^0.5);
end
error=sum(error)/UNAmount
Accuracy=error/R
```
其中 error 表示每个未知节点的定位误差,Accuracy 表示整体定位精度。
能给下面每行代码加上注释吗?clear BorderLength=100; % NodeAmount=100; % BeaconAmount=8; % UNAmount=NodeAmount-BeaconAmount; % R=50; % h=zeros(NodeAmount,NodeAmount);% X=zeros(2,UNAmount);% C=BorderLength.*rand(2,NodeAmount); % Sxy=[[1:NodeAmount];C]; Beacon=[Sxy(2,1:BeaconAmount);Sxy(3,1:BeaconAmount)];% UN=[Sxy(2,(BeaconAmount+1):NodeAmount);Sxy(3,(BeaconAmount+1):NodeAmount)];% plot(Sxy(2,1:BeaconAmount),Sxy(3,1:BeaconAmount),'r*',Sxy(2,(BeaconAmount+1):NodeAmount),Sxy(3,(BeaconAmount+1):NodeAmount),'k.') % xlim([0,BorderLength]); ylim([0,BorderLength]); title('* 红色信标节点 . 黑色未知节点') for i=1:NodeAmount % for j=1:NodeAmount Dall(i,j)=((Sxy(2,i)-Sxy(2,j))^2+(Sxy(3,i)-Sxy(3,j))^2)^0.5;% if (Dall(i,j)<=R)&(Dall(i,j)>0) h(i,j)=1;% elseif i==j h(i,j)=0; else h(i,j)=inf; end end end for k=1:NodeAmount % for i=1:NodeAmount for j=1:NodeAmount if h(i,k)+h(k,j)<h(i,j) h(i,j)=h(i,k)+h(k,j); end end end end h1=h(1:BeaconAmount,1:BeaconAmount); % D1=Dall(1:BeaconAmount,1:BeaconAmount); for i=1:BeaconAmount dhop(i,1)=sum(D1(i,:))/sum(h1(i,:));% end D2=Dall(1:BeaconAmount,(BeaconAmount+1):NodeAmount);% for i=1:BeaconAmount for j=1:UNAmount if min(D2(:,j))==D2(i,j) Dhop(1,j)=D2(i,j);% end end end hop1=h(1:BeaconAmount,(BeaconAmount+1):NodeAmount);% for i=1:UNAmount % hop=Dhop(1,i); Distance(:,i)=hop*hop1(:,i); end d=Distance; % for i=1:2 % for j=1:(BeaconAmount-1) a(i,j)=Beacon(i,j)-Beacon(i,BeaconAmount); end end A=-2*(a'); for m=1:UNAmount % for i=1:(BeaconAmount-1) B(i,1)=d(i,m)^2-d(BeaconAmount,m)^2-Beacon(1,i)^2+Beacon(1,BeaconAmount)^2-Beacon(2,i)^2+Beacon(2,BeaconAmount)^2; end X1=inv(A'*A)*A'*B; X(1,m)=X1(1,1); X(2,m)=X1(2,1); end for i=1:UNAmount % error(1,i)=(((X(1,i)-UN(1,i))^2+(X(2,i)-UN(2,i))^2)^0.5); end figure;plot(error,'-o') title('每个未知节点的误差') error=sum(error)/UNAmount % Accuracy=error/R %
注释如下:
```matlab
clear % 清空工作空间变量
BorderLength=100; % 边界长度
NodeAmount=100; % 节点数量
BeaconAmount=8; % 信标节点数量
UNAmount=NodeAmount-BeaconAmount; % 未知节点数量
R=50; % 通信半径
h=zeros(NodeAmount,NodeAmount);% 定义节点之间的距离矩阵
X=zeros(2,UNAmount);% 定义未知节点的坐标矩阵
C=BorderLength.*rand(2,NodeAmount); % 随机生成节点坐标
Sxy=[[1:NodeAmount];C]; % 将节点编号与坐标合并
Beacon=[Sxy(2,1:BeaconAmount);Sxy(3,1:BeaconAmount)];% 信标节点坐标
UN=[Sxy(2,(BeaconAmount+1):NodeAmount);Sxy(3,(BeaconAmount+1):NodeAmount)];% 未知节点坐标
plot(Sxy(2,1:BeaconAmount),Sxy(3,1:BeaconAmount),'r*',Sxy(2,(BeaconAmount+1):NodeAmount),Sxy(3,(BeaconAmount+1):NodeAmount),'k.') % 绘制节点图像
xlim([0,BorderLength]); ylim([0,BorderLength]); title('* 红色信标节点 . 黑色未知节点')
for i=1:NodeAmount % 计算节点之间的距离
for j=1:NodeAmount
Dall(i,j)=((Sxy(2,i)-Sxy(2,j))^2+(Sxy(3,i)-Sxy(3,j))^2)^0.5;% 计算节点之间的距离
if (Dall(i,j)<=R)&(Dall(i,j)>0) % 如果距离小于通信半径,节点之间可以通信
h(i,j)=1;% 设置节点之间的距离为1
elseif i==j % 如果是同一个节点
h(i,j)=0; % 距离为0
else
h(i,j)=inf; % 否则,节点之间不能通信
end
end
end
for k=1:NodeAmount % Floyd算法计算最短路径
for i=1:NodeAmount
for j=1:NodeAmount
if h(i,k)+h(k,j)<h(i,j)
h(i,j)=h(i,k)+h(k,j);
end
end
end
end
h1=h(1:BeaconAmount,1:BeaconAmount); % 信标节点之间的距离矩阵
D1=Dall(1:BeaconAmount,1:BeaconAmount);
for i=1:BeaconAmount % 计算信标节点到未知节点的跳数
dhop(i,1)=sum(D1(i,:))/sum(h1(i,:));% 计算跳数
end
D2=Dall(1:BeaconAmount,(BeaconAmount+1):NodeAmount);% 信标节点到未知节点的距离矩阵
for i=1:BeaconAmount
for j=1:UNAmount
if min(D2(:,j))==D2(i,j)
Dhop(1,j)=D2(i,j);% 计算跳数
end
end
end
hop1=h(1:BeaconAmount,(BeaconAmount+1):NodeAmount);% 计算未知节点与信标节点之间的距离矩阵
for i=1:UNAmount
hop=Dhop(1,i);
Distance(:,i)=hop*hop1(:,i); % 计算未知节点到信标节点之间的距离
end
d=Distance; % 未知节点到信标节点之间的距离
for i=1:2 % 计算矩阵A
for j=1:(BeaconAmount-1)
a(i,j)=Beacon(i,j)-Beacon(i,BeaconAmount);
end
end
A=-2*(a');
for m=1:UNAmount % 计算未知节点坐标
for i=1:(BeaconAmount-1)
B(i,1)=d(i,m)^2-d(BeaconAmount,m)^2-Beacon(1,i)^2+Beacon(1,BeaconAmount)^2-Beacon(2,i)^2+Beacon(2,BeaconAmount)^2;
end
X1=inv(A'*A)*A'*B;
X(1,m)=X1(1,1);
X(2,m)=X1(2,1);
end
for i=1:UNAmount % 计算误差
error(1,i)=(((X(1,i)-UN(1,i))^2+(X(2,i)-UN(2,i))^2)^0.5);
end
figure;plot(error,'-o') % 绘制误差图像
title('每个未知节点的误差')
error=sum(error)/UNAmount % 平均误差
Accuracy=error/R % 定位精度
阅读全文