解释下面代码def sp_noise(image, prob): ''' 添加椒盐噪声 prob:噪声比例 ''' output = np.zeros(image.shape, np.uint8) thres = 1 - prob for i in range(image.shape[0]): for j in range(image.shape[1]): rdn = random.random() if rdn < prob: output[i][j] = 0 elif rdn > thres: output[i][j] = 255 else: output[i][j] = image[i][j] return output
时间: 2024-02-14 17:14:16 浏览: 62
这是一个用于添加椒盐噪声的函数,它的参数包括一张图片和噪声比例。函数首先初始化一个与输入图片相同大小的全零数组作为输出,然后对于每个像素点,生成一个随机数,如果该随机数小于噪声比例,就将该像素点变为黑色(0),如果该随机数大于 1 - 噪声比例,就将该像素点变为白色(255),否则就保持原来的颜色。最后返回添加了椒盐噪声的图片。
相关问题
def add_noise(img, noise_type='s&p', SNR=0.1, prob=0.5): """ img: PIL.Image,输入的图像 noise_type: str,噪声类型,可选的有:'gaussian', 'poisson', 's&p',默认为's&p' SNR: float,信噪比,取值范围为[0, 1],默认为0.1 prob: float,噪声添加的概率,取值范围为[0, 1],默认为0.5 """ img = np.array(img) h, w, c = img.shape # 生成噪声 if noise_type == 'gaussian': noise = np.random.normal(0, 1, (h, w, c)) * 255 * (1 - SNR) elif noise_type == 'poisson': noise = np.random.poisson(255 * (1 - SNR), (h, w, c)) / (255 * (1 - SNR)) elif noise_type == 's&p': noise = np.zeros((h, w, c)) # 添加椒盐噪声 for i in range(h): for j in range(w): rand = random.random() if rand < prob: noise[i, j, :] = 0 elif rand > 1 - prob: noise[i, j, :] = 255 else: noise[i, j, :] = img[i, j, :] # 将图像和噪声相加 img_noise = img + noise img_noise = np.clip(img_noise, 0, 255).astype(np.uint8) img_noise = Image.fromarray(img_noise) return img_noise
这段代码实现了在给定的图像上添加噪声的功能。其中,噪声类型可以选择高斯噪声、泊松噪声和椒盐噪声。信噪比(SNR)是一个衡量信号质量的指标,它表示信号与噪声的比值。prob参数是椒盐噪声的概率,在0到1之间取值,它表示在每个像素点上添加椒盐噪声的概率。
具体实现上,这段代码首先将输入的PIL图像转换为numpy数组,然后根据噪声类型和信噪比生成对应的噪声。对于椒盐噪声,它在每个像素点上根据概率随机选择是否添加椒盐噪声。最后,将图像和噪声相加,并使用np.clip函数将像素值限制在0到255之间,最后再将numpy数组转换回PIL图像并返回。
with tf.Session() as sess: sess.run(init) saver = tf.train.Saver() train_writer = tf.summary.FileWriter(log_dir+'/train',sess.graph) test_writer = tf.summary.FileWriter(log_dir+'/test') step = 1 coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(sess, coord) print('doing1') # Keep training until reach max iterations try: while step * batch_size <= training_iters: # print('doing2') batch_xs, batch_ys = sess.run([hrrp_batch, label_batch]) # print(batch_xs.shape) # print(batch_ys.shape) # 获取批数据 sess.run(optimizer, feed_dict={x: batch_xs, y: batch_ys, keep_prob: dropout}) if step % display_step == 0: summary= sess.run(merged, feed_dict={x: batch_xs, y: batch_ys, keep_prob: 1.}) test_writer.add_summary(summary, step) # 计算精度 acc = sess.run(accuracy, feed_dict={x: batch_xs, y: batch_ys, keep_prob: 1.}) # 计算损失值 loss = sess.run(cost, feed_dict={x: batch_xs, y: batch_ys, keep_prob: 1.}) 所选择的特征是
在这段代码中,没有涉及到特征的选择。这段代码是用于在 TensorFlow 中训练一个神经网络模型的。在这段代码中,使用了一个数据队列来读取数据,其中 hrrp_batch 和 label_batch 是从数据队列中读取的批量数据。然后,使用 sess.run() 函数来运行优化器,从而通过反向传播算法来更新模型参数。在每个训练步骤中,使用 sess.run() 函数来计算模型的精度和损失值,并使用 tf.summary.FileWriter() 函数来将结果写入 TensorBoard 日志文件中。总的来说,这段代码是用于训练神经网络模型的,而特征的选择通常是在数据预处理和特征工程中进行的。
阅读全文