请写出TCGA中LUSC临床数据的下载与处理的完整R语言代码,提取生存数据,TNM分期数据等,越详细越好
时间: 2024-02-13 14:02:24 浏览: 234
好的,以下是TCGA中LUSC临床数据的下载与处理的完整R语言代码,包括了提取生存数据和TNM分期数据的步骤:
1. 下载TCGA数据
```r
library(TCGAbiolinks)
query <- GDCquery(project = "TCGA-LUSC",
data.category = "Clinical",
barcode = NULL)
GDCdownload(query)
```
2. 读取临床数据
```r
clinical_data <- GDCprepare_clinic(query)
```
3. 数据清洗
```r
# 删除NA值
clinical_data <- clinical_data[, colSums(is.na(clinical_data)) == 0]
# 删除重复列
clinical_data <- clinical_data[, !duplicated(colnames(clinical_data))]
# 选择需要的列
clinical_data <- clinical_data[, c("bcr_patient_barcode", "age_at_initial_pathologic_diagnosis", "gender", "race", "vital_status", "days_to_death", "days_to_last_followup", "pathologic_T", "pathologic_N", "pathologic_M")]
# 调整列名
colnames(clinical_data) <- c("patient_id", "age", "sex", "race", "vital_status", "days_to_death", "days_to_last_followup", "T", "N", "M")
# 转换变量类型
clinical_data$age <- as.numeric(clinical_data$age)
clinical_data$sex <- as.factor(clinical_data$sex)
clinical_data$race <- as.factor(clinical_data$race)
```
4. 提取生存数据
```r
# 删除vital_status为NA的行
clinical_data <- clinical_data[!is.na(clinical_data$vital_status),]
# 转换vital_status为生存状态
clinical_data$vital_status <- ifelse(clinical_data$vital_status == "Dead", 1, 0)
# 计算生存时间
clinical_data$survival_time <- ifelse(clinical_data$vital_status == 0, clinical_data$days_to_last_followup, clinical_data$days_to_death)
# 删除days_to_death和days_to_last_followup列
clinical_data <- clinical_data[, !grepl("^days_to_", colnames(clinical_data))]
```
5. 提取TNM分期数据
```r
# 合并T、N、M列为一个新列TNM
clinical_data$TNM <- paste(clinical_data$T, clinical_data$N, clinical_data$M, sep = "")
# 删除T、N、M列
clinical_data <- clinical_data[, !grepl("^pathologic_[T|N|M]", colnames(clinical_data))]
```
以上就是TCGA中LUSC临床数据的下载与处理的完整R语言代码,其中包括了数据下载、读取、清洗、生存数据和TNM分期数据的提取等步骤,代码中也包含了注释,希望对你有所帮助。
阅读全文