n <- 20 p <- 200 r <- 0.05 x <- matrix(rnorm(n * p), n, p) e <- rnorm(n, 0, 1) inde <- sample(n, r * n) x[inde, 1] <- 2 * sqrt(rchisq(r * n, df = p)) y <- 5 * x[, 1] + 5 * x[, 2] + 5 * x[, 3] + e d <- 19 fit.QCSIS <- QCSIS(x = x, y = y, d = d) fit.QCSIS$M:[1] 94 143 1 88 123 3 138 174 136 129 128 15 116 185 87 139 7 112 172这个代码的结果是什么意思?

时间: 2024-04-09 17:30:07 浏览: 23
这段代码使用了QCSIS包进行了一次QCSIS(Quantile-Based Covariate Selection and Influence Screening)分析。下面是对结果的解释: - `fit.QCSIS$M`是一个长度为d的向量,表示在QCSIS分析中被选择的变量的索引。在这个特定的结果中,被选择的变量的索引依次是:94, 143, 1, 88, 123, 3, 138, 174, 136, 129, 128, 15, 116, 185, 87, 139, 7, 112, 172。这些索引对应于原始数据矩阵x中被选中的列。 QCSIS方法旨在通过使用分位数来进行变量选择和影响筛选。它可以帮助识别对目标变量y具有重要影响的自变量。在这个例子中,通过QCSIS分析,选择了一些与目标变量y相关性较高的自变量,并返回了它们在原始数据矩阵x中的索引。 请注意,QCSIS分析结果可能因为数据集和参数的不同而有所差异。因此,您在使用QCSIS包进行分析时,可能会得到不同的结果。
相关问题

n <- 100 alp <- 0.05 beta1hat <- numeric(n) beta2hat <- numeric(n) x1<- as.matrix(rnorm(n,0,0.5)) x2<- as.matrix(rbinom(n,1,prob=0.5)) eb <- as.matrix(rnorm(n,0,1)) y <- 2*x1+3*x2 beta1hat[i]<- solve(t(x1)%*%x1)%*%t(x1)%*%y beta2hat[i]<- solve(t(x2)%*%x2)%*%t(x2)%*%y怎么生成100个beta1hat和beta2hathat

可以使用for循环来生成100个beta1hat和beta2hat。具体实现方法如下: ``` n <- 100 alp <- 0.05 beta1hat <- numeric(n) beta2hat <- numeric(n) x1 <- as.matrix(rnorm(n, 0, 0.5)) x2 <- as.matrix(rbinom(n, 1, prob = 0.5)) eb <- as.matrix(rnorm(n, 0, 1)) y <- 2 * x1 + 3 * x2 for (i in 1:n) { beta1hat[i] <- solve(t(x1) %*% x1) %*% t(x1) %*% y beta2hat[i] <- solve(t(x2) %*% x2) %*% t(x2) %*% y } ``` 这样就可以生成100个beta1hat和beta2hat了,它们分别保存在beta1hat和beta2hat向量中。

k <- 1000 n <- 100 beta0 <- c(1,1) #真实值 alp <- 0.05 #显著性水平 beta1hat <- matrix(nrow = k,ncol = 2) beta2hat <- matrix(nrow = k,ncol = 2) hsig <- numeric(k) hus <- matrix(nrow = k,ncol = 2) hls <- matrix(nrow = k,ncol = 2) y <- 2*x1+3*x2 for(i in 1:k){ x1 <- rnorm(n,0,0.5) x2 <- rbinom(n,1,prob=0.5) eb <- rnorm(n,0,1) hy <- X1%*%beta1hat +X2%*%beta2hat+eb beta1hat[i] <- solve(t(x1)%*%x1)%*%t(x1)%*%hy beta2hat[i] <- solve(t(x2)%*%x2)%*%t(x2)%*%hy }

这段代码是一个模拟线性回归的过程。其中,通过生成随机数来模拟自变量和误差项,然后利用最小二乘法来估计回归系数。其中,beta1hat和beta2hat是两个回归系数的估计值,hsig、hus和hls则是用来计算回归系数的标准误、上置信限和下置信限的值。最后,y是根据真实值和估计出来的回归系数计算出来的因变量的值。

相关推荐

最新推荐

recommend-type

DataFrame iloc练习.ipynb

DataFrame iloc练习.ipynb
recommend-type

水箱加热系统的PLC温度控制课程设计.doc

plc
recommend-type

制造企业数字化中台(技术中台、数据中台、业务中台)建设方案.pptx

制造企业数字化中台(技术中台、数据中台、业务中台)建设方案.pptx
recommend-type

实验二 预习报告.docx

实验二 预习报告.docx
recommend-type

20240702作业1

20240702作业1
recommend-type

共轴极紫外投影光刻物镜设计研究

"音视频-编解码-共轴极紫外投影光刻物镜设计研究.pdf" 这篇博士学位论文详细探讨了共轴极紫外投影光刻物镜的设计研究,这是音视频领域的一个细分方向,与信息技术中的高级光学工程密切相关。作者刘飞在导师李艳秋教授的指导下,对这一前沿技术进行了深入研究,旨在为我国半导体制造设备的发展提供关键技术支持。 极紫外(EUV)光刻技术是当前微电子制造业中的热点,被视为下一代主流的光刻技术。这种技术的关键在于其投影曝光系统,特别是投影物镜和照明系统的设计。论文中,作者提出了创新的初始结构设计方法,这为构建高性能的EUV光刻投影物镜奠定了基础。非球面结构的成像系统优化是另一个核心议题,通过这种方法,可以提高光刻系统的分辨率和成像质量,达到接近衍射极限的效果。 此外,论文还详细阐述了极紫外光刻照明系统的初始建模和优化策略。照明系统的优化对于确保光刻过程的精确性和一致性至关重要,能够减少缺陷,提高晶圆上的图案质量。作者使用建立的模型和优化算法,设计出多套EUV光刻机的成像系统,并且经过优化后的系统展现出优秀的分辨率和成像性能。 最后,作者在论文中做出了研究成果声明,保证了所有内容的原创性,并同意北京理工大学根据相关规定使用和分享学位论文。这表明,该研究不仅代表了个人的学术成就,也符合学术界的伦理规范,有助于推动相关领域的知识传播和进步。 这篇论文深入研究了共轴极紫外投影光刻物镜的设计,对于提升我国半导体制造技术,尤其是光刻技术的自主研发能力具有重大意义。其内容涵盖的非球面成像系统优化、EUV照明系统建模与优化等,都是目前微电子制造领域亟待解决的关键问题。这些研究成果不仅为实际的光刻设备开发提供了理论基础,也为未来的科研工作提供了新的思路和方法。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

泊松分布:离散分布中的典型代表,探索泊松分布的应用场景

![泊松分布:离散分布中的典型代表,探索泊松分布的应用场景](https://img-blog.csdnimg.cn/20190802094932661.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3ltaHVh,size_16,color_FFFFFF,t_70) # 1. 泊松分布的理论基础 泊松分布是一种离散概率分布,用于描述在固定时间或空间间隔内发生的随机事件的数量。它以法国数学家西梅翁·德尼·泊松(Siméon Denis
recommend-type

``` if build_id then -- 单个屋子 else -- 所有屋子 end ```

在你的代码片段中,`build_id` 的存在与否决定了执行不同的逻辑。如果 `build_id` 为真(非空或非零),则执行针对单个屋子的代码;否则,执行针对所有屋子的代码。这种结构在 Lua 中已经相对简洁,但为了提高可读性和潜在的性能优化,你可以考虑以下几点: 1. **使用更明确的条件语句**:可以使用 `if build_id ~= nil` 替换 `if build_id then`,因为 `nil` 在 Lua 中被视为 `false`。 2. **逻辑封装**:如果两个分支的代码复杂度相当,可以考虑将它们抽象为函数,这样更易于维护和复用。 3. **避免不必要的布尔转换*
recommend-type

基于GIS的通信管线管理系统构建与音视频编解码技术应用

音视频编解码在基于GIS的通信管线管理系统中的应用 音视频编解码技术在当前的通信技术中扮演着非常重要的角色,特别是在基于GIS的通信管线管理系统中。随着通信技术的快速发展和中国移动通信资源的建设范围不断扩大,管线资源已经成为电信运营商资源的核心之一。 在当前的通信业务中,管线资源是不可或缺的一部分,因为现有的通信业务都是建立在管线资源之上的。随着移动、电信和联通三大运营商之间的竞争日益激烈,如何高效地掌握和利用管线资源已经成为运营商的一致认识。然而,大多数的资源运营商都将资源反映在图纸和电子文件中,管理非常耗时。同时,搜索也非常不方便,当遇到大规模的通信事故时,无法找到相应的图纸,浪费了大量的时间,给运营商造成了巨大的损失。 此外,一些国家的管线资源系统也存在许多问题,如查询基本数据非常困难,新项目的建设和迁移非常困难。因此,建立一个基于GIS的通信管线管理系统变得非常必要。该系统可以实现管线资源的高效管理和查询,提高运营商的工作效率,减少事故处理时间,提高客户满意度。 在基于GIS的通信管线管理系统中,音视频编解码技术可以发挥重要作用。通过音视频编解码技术,可以将管线资源的信息实时地捕捉和处理,从而实现管线资源的实时监控和管理。同时,音视频编解码技术也可以用于事故处理中,对管线资源进行实时监控和分析,以便快速确定事故原因和位置,减少事故处理时间。 此外,基于GIS的通信管线管理系统还可以实现管线资源的空间分析和可视化,通过音视频编解码技术,可以将管线资源的信息转换为实时的视频图像,从而实现管线资源的实时监控和管理。同时,该系统还可以实现管线资源的智能分析和预测,对管线资源的使用和维护进行科学的分析和预测,从而提高管线资源的使用效率和可靠性。 音视频编解码技术在基于GIS的通信管线管理系统中扮演着非常重要的角色,可以实现管线资源的高效管理和查询,提高运营商的工作效率,减少事故处理时间,提高客户满意度。