首页
transpose convolution
transpose convolution
时间: 2023-04-27 22:03:50
浏览: 105
卷积变换 convolution
立即下载
卷积变换,经过测试无误,与matlab中conv函数结果相同
转置卷积(transpose convolution)是一种卷积神经网络中常用的操作,也称为反卷积(deconvolution)。它是卷积的一种逆运算,可以将卷积的输出还原为输入。转置卷积通常用于图像分割、图像重建、语音合成等任务中。它的实现方式有多种,包括基于卷积核的转置卷积、基于插值的转置卷积等。
阅读全文
相关推荐
PConv的详细介绍.zip
3. **反卷积恢复**: 使用反卷积(Deconvolution)或者转置卷积(Transpose Convolution)操作,将处理后的特征图恢复到与原始输入相同的尺寸,从而填充缺失区域。 4. **损失函数优化**: PConv模型通常采用L1或L2...
细胞分割经典模型unet数据集与模型实现pytorch代码
2. **构建解码器**:创建一系列的上采样层,每个层包含一个反卷积(Transpose Convolution)和两个卷积层,用于特征融合和输出映射。 3. **添加跳跃连接**:在解码器的每个上采样层之后,将编码器相应层的输出与之...
Convolution和Transpose Convolution
Convolution和Transpose Convolution是深度学习中常用的卷积操作。Convolution是一种对输入数据进行滤波的操作,常用于图像、语音等数据的处理。Transpose Convolution是Convolution的逆操作,可以用于图像的上采样...
transpose convolution layer作用
Transpose convolution layer(转置卷积层)是一种常用的卷积神经网络(CNN)的层类型,它通常用于图像分割、图像生成等任务中。 在卷积神经网络中,卷积层可以通过卷积核对输入进行卷积操作,从而生成一组特征图。...
Unveiling the Mysteries of Transpose Matrix: 10 Practical Applications to Master Transpose Matrix
# Demystifying the Transpose Matrix: 10 Applications That Will Make You Master Transpose Matrices ## 1. The Concept and Properties of Transpose Matrices ### 1.1 The Concept of Transpose Matrices A ...
Application of Transpose Matrix in Signal Processing: The Secrets of Filtering, Denoising, and ...
An Overview of Transpose Matrix in Signal Processing** The transpose matrix plays a crucial role in signal processing, as it is a special type of matrix with its elements mirrored along the main ...
pytorch convolution
: Transpose Convolution: F.conv_transpose2d, kernel转置, 上采样 : 二维卷积源码: import torch import torch.nn as nn import torch.nn.functional as F in_channels = 1 out_channels = 1 kernel_size = 3 # ...
transpose conv
转置卷积(Transposed Convolution)在语义分割或者对抗神经网络(GAN)中比较常见,其主要作用是进行上采样(UpSampling)。转置卷积并不是卷积的逆运算,也不是真正的逆运算,它实际上是卷积的另一种形式。在...
class Convolution: def __init__(self, W, b, stride=1, pad=0): self.W = W self.b = b self.stride = stride self.pad = pad # 中间数据(backward时使用) self.x = None self.col = None self.col_W = None # 权重和偏置参数的梯度 self.dW = None self.db = None def forward(self, x): FN, C, FH, FW = self.W.shape N, C, H, W = x.shape out_h = 1 + int((H + 2*self.pad - FH) / self.stride) out_w = 1 + int((W + 2*self.pad - FW) / self.stride) col = im2col(x, FH, FW, self.stride, self.pad) col_W = self.W.reshape(FN, -1).T out = np.dot(col, col_W) + self.b out = out.reshape(N, out_h, out_w, -1).transpose(0, 3, 1, 2) self.x = x self.col = col self.col_W = col_W return out def backward(self, dout): FN, C, FH, FW = self.W.shape dout = dout.transpose(0,2,3,1).reshape(-1, FN) self.db = np.sum(dout, axis=0) self.dW = np.dot(self.col.T, dout) self.dW = self.dW.transpose(1, 0).reshape(FN, C, FH, FW) dcol = np.dot(dout, self.col_W.T) dx = col2im(dcol, self.x.shape, FH, FW, self.stride, self.pad) return dx
这段代码定义了 Convolution 类的前向传播和反向传播方法,其中前向传播方法 forward 接受输入张量 x,返回卷积层的输出张量 out。在前向传播方法中,它首先计算输出张量 out 的高度和宽度,然后将输入张量 x 转换成...
from tensorflow.contrib.layers import conv2d_transpose出错
如果你想进行上采样(transpose convolution),你应该使用tf.keras.layers.Conv2DTranspose或者tf.nn.conv2d_transpose。 如果你遇到这个错误,可能是由于以下几个原因: 1. TensorFlow版本过旧:请检查是否...
Write a Style transfer program based on convolution neural network with python, and save the training weight in a file separately.
gram = tf.matmul(a, a, transpose_a=True) return gram / tf.cast(n, tf.float32) def style_loss(style_features, generated_features): style_gram = gram_matrix(style_features) generated_gram = gram_...
详细分析代码“def cnn_model(features, target): target = tf.one_hot(target, 15, 1, 0) #对词编码 word_vectors = tf.contrib.layers.embed_sequence(features ,vocab_size=n_words ,embed_dim=EMBEDDING_SIZE ,scope='words') word_vectors = tf.expand_dims(word_vectors, 3) with tf.variable_scope('CNN_Layer1'): # 添加卷积层做滤波 conv1 = tf.contrib.layers.convolution2d(word_vectors ,N_FILTERS #滤波数10 ,FILTER_SHAPE1 ,padding='VALID') # 添加RELU非线性 conv1 = tf.nn.relu(conv1) # 最大池化 pool1 = tf.nn.max_pool(conv1 ,ksize=[1, POOLING_WINDOW, 1, 1]#ksize池化窗口大小[1,4,1,1] ,strides=[1, POOLING_STRIDE, 1, 1]#步长[1,2,1,1] ,padding='SAME')#填充补0 # 对矩阵进行转置,以满足形状 pool1 = tf.transpose(pool1, [0, 1, 3, 2]) with tf.variable_scope('CNN_Layer2'):”每一句代码的详细作用,用了什么函数什么参数有什么作用,什么含义,并添加详细注释
4. tf.contrib.layers.convolution2d(word_vectors, N_FILTERS, FILTER_SHAPE1, padding='VALID'):添加卷积层,使用N_FILTERS个大小为FILTER_SHAPE1的滤波器进行卷积操作。 5. tf.nn.relu(conv1):对卷积结果...
电气工程及其自动化 (2).docx
电气工程及其自动化 (2)
vs-Community2017
主要功能 多语言支持: 支持多种编程语言的开发。例如,对于 C# 开发,它提供了智能感知(IntelliSense)功能,在编写代码时能够自动提示类、方法、属性等,帮助开发者快速准确地编写代码。对于 Python 开发,它也提供了代码自动补全和语法检查功能。 不同语言的项目可以在同一个 IDE 中管理和开发。比如,可以在一个解决方案中同时包含 C++ 的库项目和使用这个库的 C# 应用程序项目。 项目管理与模板: 提供了丰富的项目模板。以创建 Web 应用为例,有ASP.NET Web 应用模板,包括 MVC(Model - View - Controller)、Web API 等不同的架构模式模板,方便开发者快速搭建项目框架。 能够有效地管理项目的资源,如代码文件、图像、配置文件等。可以轻松地添加、删除、重命名文件,并且可以在解决方案资源管理器中查看项目的层次结构。 调试功能强大: 支持多种调试方式。对于本地应用程序,可以设置断点,逐行调试代码,查看变量的值和状态。在调试过程中,可以查看调用堆栈,了解代码的执行流程。 还能进行远程调试。如果应用程序部署在远程服务器上,通过适当的配置,
数据科学与大数据技术 (10).docx
数据科学与大数据技术 (10)
高跟鞋检测24-YOLOv8数据集合集.rar
高跟鞋检测24-YOLOv8数据集合集.rar个人防护设备-V3 2024-05-27 1:32 PM ============================= *与您的团队在计算机视觉项目上合作 *收集和组织图像 *了解和搜索非结构化图像数据 *注释,创建数据集 *导出,训练和部署计算机视觉模型 *使用主动学习随着时间的推移改善数据集 对于最先进的计算机视觉培训笔记本,您可以与此数据集一起使用 该数据集包含4196张图像。 个人保护设备以yolov8格式注释。 将以下预处理应用于每个图像: *像素数据的自动取向(带有Exif-Arientation剥离) *调整大小为640x640(拉伸) 应用以下扩展来创建每个源图像的3个版本: *水平翻转的50%概率 *随机裁剪图像的0%至20% * -15%至+15%之间的随机BRIGTHNESS调整 *随机暴露调整-10%至+10% *随机的高斯模糊在0到2.5像素之间 *将盐和胡椒噪声应用于0.1%的像素
JSP基于SSM新闻发布系统网站设计毕业源码案例设计.zip
JSP基于SSM新闻发布系统网站设计毕业源码案例设计ssm新闻JSP基于SSM新闻发布系统网站设计新闻分类: 分类id,分类名称新闻信息: 新闻id,新闻类别,新闻标题,新闻图片,新闻内容,新闻来源,浏览次数,添加时间用户信息: 用户名,密码,姓名,性别,出生日期,联系电话,邮箱地址,家庭地址,照片,附加信息新闻标记: 标记id,被标记新闻,标记的用户,新闻状态,标记时间新闻评论: 评论id,被评新闻,评论人,评论内容,评论时间新闻收藏: 收藏id,被收藏新闻,收藏人,收藏时间新闻赞: 赞id,被赞新闻,用户,被赞时间
配电网自动化技术—配电网馈线监控终端.pptx
配电网自动化技术—配电网馈线监控终端.pptx
学生毕业离校系统-管理系统-毕业设计源码.zip
学生毕业离校系统_管理系统_毕业设计源码学生毕业离校系统简介学生毕业离校系统基于Spring Boot开发,角色划分管理和学生提供学籍管理、离校手续办理、论文审核、费用结算、信息发布等功能模块,界面简洁示意图,高效提升毕业流程管理效率。 --计算机毕业设计源码毕设源码java毕业设计源码联系方式获取完整代码与数据库文件 + 微信deepguan QQ: 86050149 QQ群: 783742310可帮忙远程部署包运行成功!提供远程部署、修改代码、设计文档指导、代码讲解等服务!功能介绍(完整运行截图)管理员基本功能包括登录、注册、退学等,负责管理学生毕业离校系统的多个功能模块。管理员可以通过系统管理用户信息、审核学生离校申请、发布网站公告和管理留言反馈。 ,管理员还具有管理费用结算和论文审核的权限,能够查看和整理学生的离校流程以及支付监控状态,确保系统运行的不止。管理员图纸进行系统内容的编辑和公告发布,管理播放图及常规网站功能,提供高效的管理工具以支持学生离校流程的合理安排。教师教师在系统中主要负责班级的论文审核和费用结算工作。教师可以通过用户界面查看
CSDN会员
开通CSDN年卡参与万元壕礼抽奖
海量
VIP免费资源
千本
正版电子书
商城
会员专享价
千门
课程&专栏
全年可省5,000元
立即开通
全年可省5,000元
立即开通
最新推荐
电气工程及其自动化 (2).docx
电气工程及其自动化 (2)
R语言中workflows包的建模工作流程解析
资源摘要信息:"工作流程建模是将预处理、建模和后处理请求结合在一起的过程,从而优化数据科学的工作流程。工作流程可以将多个步骤整合为一个单一的对象,简化数据处理流程,提高工作效率和可维护性。在本资源中,我们将深入探讨工作流程的概念、优点、安装方法以及如何在R语言环境中使用工作流程进行数据分析和模型建立的例子。 首先,工作流程是数据处理的一个高级抽象,它将数据预处理(例如标准化、转换等),模型建立(例如使用特定的算法拟合数据),以及后处理(如调整预测概率)等多个步骤整合起来。使用工作流程,用户可以避免对每个步骤单独跟踪和管理,而是将这些步骤封装在一个工作流程对象中,从而简化了代码的复杂性,增强了代码的可读性和可重用性。 工作流程的优势主要体现在以下几个方面: 1. 管理简化:用户不需要单独跟踪和管理每个步骤的对象,只需要关注工作流程对象。 2. 效率提升:通过单次fit()调用,可以执行预处理、建模和模型拟合等多个步骤,提高了操作的效率。 3. 界面简化:对于具有自定义调整参数设置的复杂模型,工作流程提供了更简单的界面进行参数定义和调整。 4. 扩展性:未来的工作流程将支持添加后处理操作,如修改分类模型的概率阈值,提供更全面的数据处理能力。 为了在R语言中使用工作流程,可以通过CRAN安装工作流包,使用以下命令: ```R install.packages("workflows") ``` 如果需要安装开发版本,可以使用以下命令: ```R # install.packages("devtools") devtools::install_github("tidymodels/workflows") ``` 通过这些命令,用户可以将工作流程包引入到R的开发环境中,利用工作流程包提供的功能进行数据分析和建模。 在数据建模的例子中,假设我们正在分析汽车数据。我们可以创建一个工作流程,将数据预处理的步骤(如变量选择、标准化等)、模型拟合的步骤(如使用特定的机器学习算法)和后处理的步骤(如调整预测阈值)整合到一起。通过工作流程,我们可以轻松地进行整个建模过程,而不需要编写繁琐的代码来处理每个单独的步骤。 在R语言的tidymodels生态系统中,工作流程是构建高效、可维护和可重复的数据建模工作流程的重要工具。通过集成工作流程,R语言用户可以在一个统一的框架内完成复杂的建模任务,充分利用R语言在统计分析和机器学习领域的强大功能。 总结来说,工作流程的概念和实践可以大幅提高数据科学家的工作效率,使他们能够更加专注于模型的设计和结果的解释,而不是繁琐的代码管理。随着数据科学领域的发展,工作流程的工具和方法将会变得越来越重要,为数据处理和模型建立提供更加高效和规范的解决方案。"
管理建模和仿真的文件
管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
【工程技术中的数值分析秘籍】:数学问题的终极解决方案
![【工程技术中的数值分析秘籍】:数学问题的终极解决方案](https://media.geeksforgeeks.org/wp-content/uploads/20240429163511/Applications-of-Numerical-Analysis.webp) 参考资源链接:[东南大学_孙志忠_《数值分析》全部答案](https://wenku.csdn.net/doc/64853187619bb054bf3c6ce6?spm=1055.2635.3001.10343) # 1. 数值分析的数学基础 在探索科学和工程问题的计算机解决方案时,数值分析为理解和实施这些解决方案提供了
如何在数控车床仿真系统中正确进行机床回零操作?请结合手工编程和仿真软件操作进行详细说明。
机床回零是数控车床操作中的基础环节,特别是在仿真系统中,它确保了机床坐标系的正确设置,为后续的加工工序打下基础。在《数控车床仿真实验:操作与编程指南》中,你可以找到关于如何在仿真环境中进行机床回零操作的详尽指导。具体操作步骤如下: 参考资源链接:[数控车床仿真实验:操作与编程指南](https://wenku.csdn.net/doc/3f4vsqi6eq?spm=1055.2569.3001.10343) 首先,确保数控系统已经启动,并处于可以进行操作的状态。然后,打开机床初始化界面,解除机床锁定。在机床控制面板上选择回零操作,这通常涉及选择相应的操作模式或输入特定的G代码,例如G28或
Vue统计工具项目配置与开发指南
资源摘要信息:"该项目标题为'bachelor-thesis-stat-tool',是一个涉及统计工具开发的项目,使用Vue框架进行开发。从描述中我们可以得知,该项目具备完整的前端开发工作流程,包括项目设置、编译热重装、生产编译最小化以及代码质量检查等环节。具体的知识点包括: 1. Vue框架:Vue是一个流行的JavaScript框架,用于构建用户界面和单页应用程序。它采用数据驱动的视图层,并能够以组件的形式构建复杂界面。Vue的核心库只关注视图层,易于上手,并且可以通过Vue生态系统中的其他库和工具来扩展应用。 2. yarn包管理器:yarn是一个JavaScript包管理工具,类似于npm。它能够下载并安装项目依赖,运行项目的脚本命令。yarn的特色在于它通过一个锁文件(yarn.lock)来管理依赖版本,确保项目中所有人的依赖版本一致,提高项目的可预测性和稳定性。 3. 项目设置与开发流程: - yarn install:这是一个yarn命令,用于安装项目的所有依赖,这些依赖定义在package.json文件中。执行这个命令后,yarn会自动下载并安装项目所需的所有包,以确保项目环境配置正确。 - yarn serve:这个命令用于启动一个开发服务器,使得开发者可以在本地环境中编译并实时重载应用程序。在开发模式下,这个命令通常包括热重载(hot-reload)功能,意味着当源代码发生变化时,页面会自动刷新以反映最新的改动,这极大地提高了开发效率。 4. 生产编译与代码最小化: - yarn build:这个命令用于构建生产环境所需的代码。它通常包括一系列的优化措施,比如代码分割、压缩和打包,目的是减少应用程序的体积和加载时间,提高应用的运行效率。 5. 代码质量检查与格式化: - yarn lint:这个命令用于运行项目中的lint工具,它是用来检查源代码中可能存在的语法错误、编码风格问题、代码重复以及代码复杂度等问题。通过配置适当的lint规则,可以统一项目中的代码风格,提高代码的可读性和可维护性。 6. 自定义配置: - 描述中提到'请参阅',虽然没有具体信息,但通常意味着项目中会有自定义的配置文件或文档,供开发者参考,如ESLint配置文件(.eslintrc.json)、webpack配置文件等。这些文件中定义了项目的个性化设置,包括开发服务器设置、代码转译规则、插件配置等。 综上所述,这个项目集成了前端开发的常用工具和流程,展示了如何使用Vue框架结合yarn包管理器和多种开发工具来构建一个高效的项目。开发者需要熟悉这些工具和流程,才能有效地开发和维护项目。"
"互动学习:行动中的多样性与论文攻读经历"
多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
74LS181逻辑电路设计:原理图到实际应用的速成课
参考资源链接:[4位运算功能验证:74LS181 ALU与逻辑运算实验详解](https://wenku.csdn.net/doc/2dn8i4v6g4?spm=1055.2635.3001.10343) # 1. 74LS181逻辑电路概述 ## 1.1 74LS181的定义与重要性 74LS181是一款广泛应用于数字逻辑设计的4位算术逻辑单元(ALU),它提供了一系列算术和逻辑运算功能,使得复杂的计算任务得以简化实现。该器件由16个引脚组成,是早期数字系统设计的核心组件之一。 ## 1.2 74LS181的应用背景 74LS181出现在计算机和数字电路设计的黄金时期,它支持多种二进制运
在集成电路测试中,如何根据JEDEC标准正确应用K因子校准方法来测量热阻?
对于从事半导体器件测试的工程师来说,掌握基于JEDEC标准的热阻测量方法是至关重要的。在这些方法中,K因子校准是确保热阻测量精度的关键步骤。为了帮助你深入理解并正确应用K因子校准方法,我们建议参考《JEDEC JESD51-1:集成电路热特性与电学测试》。这份文档详细介绍了如何进行K因子校准以及相关的测试流程。 参考资源链接:[JEDEC JESD51-1:集成电路热特性与电学测试](https://wenku.csdn.net/doc/3rddttq31q?spm=1055.2569.3001.10343) K因子校准方法涉及以下几个关键步骤:
基于Spearman相关性的协同过滤推荐引擎分析
资源摘要信息:"本资源是一套使用MATLAB编写的spearman相关系数实现的协同过滤推荐引擎代码。通过该代码,研究者们可以对基于邻域的协同过滤技术在电影推荐系统中的有效性进行评估。协同过滤技术是个性化推荐系统中常用的算法之一,它通过分析用户间的相似度,来预测某个用户对未评分项目的喜好。该项目实现了多种相似性指标,以支持不同的协同过滤方法,并提供了详细的运行说明,便于研究人员或开发者操作使用。 首先,项目中提到的几种相似性指标是协同过滤推荐系统的核心组件,包括: 1. 皮尔逊相关系数(Pearson Correlation Coefficient):该系数是衡量两个变量线性相关程度的方法,常用于用户间相似度的计算。 2. 斯皮尔曼等级相关系数(Spearman's Rank Correlation Coefficient):与皮尔逊相关系数不同,斯皮尔曼相关系数适用于衡量两个变量的单调相关性,即使数据不服从正态分布或存在非线性关系时也能使用。 3. 均方距离(Mean Squared Distance):这是衡量两个向量之间距离的一种方法,常用于计算用户或物品之间的相似度。 4. 余弦相似度(Cosine Similarity):通过测量两个向量之间的夹角的余弦值来确定它们之间的相似性,适用于衡量项目间的相似度。 项目中提到的“训练”和“预测”部分涉及到协同过滤推荐系统的两个主要阶段: - 训练阶段:此阶段主要是根据用户的历史行为数据(例如电影评分数据)来训练推荐模型。在这个过程中,用户间或物品间的相似性被计算,并构建推荐模型。 - 预测阶段:训练好的模型会用来预测用户对于特定项目的评分,或生成推荐列表。根据预测分数,可以向用户推荐他们可能会喜欢的项目。 项目的运行说明中提到,所有的命令都需要从项目的主目录发出,并且需要安装特定的依赖。安装依赖的命令为: `pip install -r requirements.txt` 这说明项目的运行环境需要Python,并且会使用到一些外部库和工具。 对于训练和预测的命令,其格式为: ``` python Code/runner.py --mode [train/test] --algorithm insert_algorithm_here --model-file algorithm's_name.model --data Data/ratings.csv ``` 其中,`--mode` 参数用于指定是执行训练还是测试模式。训练模式下,模型会被训练并保存下来;测试模式下,模型会读取训练好的模型参数,用来进行评分预测。`--algorithm` 参数允许用户指定具体的算法名称,例如,如果是使用斯皮尔曼等级相关系数作为相似度指标,那么这里的值就应该是对应的算法标识。`--model-file` 参数用于指定模型文件的名称和位置,而`--data` 参数用于指定数据文件的位置。 对于预测部分,还额外提供了`--num-neighbors` 和 `--predictions-file` 两个参数: - `--num-neighbors` 指定了在邻域方法中使用的邻居数,默认值为五。 - `--predictions-file` 允许用户指定预测结果文件的名称和保存路径。 该项目支持系统开源,其文件列表中提到的 "Collaborative-Filtering-Recommendation-Engine-master" 表示这是一个主版本的项目文件夹,包含了所有的源代码、依赖文件和运行脚本,便于进行版本控制和管理。 综上所述,该MATLAB代码项目提供了一个研究和实现协同过滤推荐引擎的有效平台,尤其适用于电影推荐系统的开发和研究。通过提供不同的相似性指标和清晰的运行指导,项目能够让用户更好地理解和评估协同过滤技术在实际应用中的表现。"