利用Richardson 外推法求 $$ \left\{\begin{array}{l} L u=-\frac{d}{d x}\left(p \frac{d u}{d x}\right)+r \frac{d u}{d x}+q u=f \quad a<x<b \\ u(a)=\alpha, u(b)=\beta \end{array}\right. $$ 的变步长差分方法d1matlab代码
时间: 2023-07-01 12:07:06 浏览: 218
以下是利用Richardson外推法求解二阶常微分方程的变步长差分方法的MATLAB代码:
```matlab
function [x, u] = richardson(d, a, b, alpha, beta, p, q, r, f, tol)
% d: 初始步长
% a, b: 区间左右端点
% alpha, beta: 边值条件
% p, q, r, f: 方程参数
% tol: 容许误差
Nmax = 10000; % 最大迭代次数
x = a:d:b; % 网格点
N = length(x); % 网格数
u = zeros(1, N); % 数值解
u(1) = alpha; % 边界条件
u(N) = beta; % 边界条件
err = tol + 1; % 初始误差
n = 0; % 迭代次数
while err > tol && n < Nmax
% 列出差分方程
A = zeros(N-2, N-2);
b = zeros(N-2, 1);
for i = 2:N-1
if i == 2
A(i-1, i-1) = -2/d^2+p(x(i))/d+q(x(i));
A(i-1, i) = 1/d^2-r(x(i))/(2*d);
b(i-1) = f(x(i))-u(i-1)*(p(x(i))/d-r(x(i))/(2*d));
elseif i == N-1
A(i-1, i-2) = 1/d^2+r(x(i))/(2*d);
A(i-1, i-1) = -2/d^2+p(x(i))/d+q(x(i));
b(i-1) = f(x(i))-u(i+1)*(p(x(i))/d+r(x(i))/(2*d));
else
A(i-1, i-2) = 1/d^2+r(x(i))/(2*d);
A(i-1, i-1) = -2/d^2+p(x(i))+q(x(i))*d^2;
A(i-1, i) = 1/d^2-r(x(i))/(2*d);
b(i-1) = f(x(i));
end
end
% 求解线性方程组
v = A \ b;
% 利用 Richardson 外推法计算新的数值解
u_new = zeros(1, N);
u_new(1) = alpha;
u_new(N) = beta;
for i = 2:N-1
u_new(i) = u(i) + (u(i)-u(i-1))/(4^(n+1)-1) + (v(i-1)-v(i-2))/(3*4^(n+1)*(d/2)^(2)-1);
end
% 计算误差
err = max(abs(u_new-u));
% 更新数值解
u = u_new;
% 更新步长和迭代次数
d = d/2;
n = n+1;
end
end
```
使用方法:
```matlab
% 定义方程参数和边值条件
a = 0; b = 1;
alpha = 0; beta = 1;
p = @(x) 1+x.^2;
q = @(x) exp(x);
r = @(x) cos(x);
f = @(x) 2*x.^3;
tol = 1e-6;
% 初始步长为 1/10
d = 1/10;
% 求解方程
[x, u] = richardson(d, a, b, alpha, beta, p, q, r, f, tol);
% 绘制数值解图像
plot(x, u);
```
阅读全文