const int trigPin = 9; const int echoPin = 10; long duration; int distance; void setup() { pinMode(trigPin, OUTPUT); pinMode(echoPin, INPUT); Serial.begin(9600); } void loop() { digitalWrite(trigPin, LOW); delayMicroseconds(2); digitalWrite(trigPin, HIGH); delayMicroseconds(10); digitalWrite(trigPin, LOW); duration = pulseIn(echoPin, HIGH); distance = duration * 0.034 / 2; Serial.print("Distance: "); Serial.println(distance); delay(500); }

时间: 2024-02-01 07:04:31 浏览: 18
这段代码实现了使用超声波传感器来测量距离的功能。其中,定义了两个常量trigPin和echoPin,分别代表超声波传感器的触发引脚和回声引脚。在setup函数中,将trigPin设置为输出模式,echoPin设置为输入模式,并通过Serial.begin函数初始化串口通讯。在loop函数中,首先将trigPin引脚设置为LOW,延时2微秒,然后将trigPin引脚设置为HIGH,延时10微秒,最后将trigPin引脚设置为LOW。这一系列操作用于发射超声波信号。接着,使用pulseIn函数读取echoPin引脚的高电平持续时间,即接收到回声的时间。根据声波传播的速度,计算出距离,并将其存储在distance变量中。最后,通过Serial.println函数将距离输出到串口监视器中,并延时500毫秒。循环执行以上操作,实现了实时测量距离的功能。
相关问题

// 定义超声波传感器的引脚const int trigPin = 2;const int echoPin = 3;// 定义LED的引脚const int ledPin = 9;// 定义距离范围const int minDist = 2;const int maxDist = 400;void setup() { // 初始化串口和LED Serial.begin(9600); pinMode(ledPin, OUTPUT);}void loop() { // 发送超声波信号 digitalWrite(trigPin, LOW); delayMicroseconds(2); digitalWrite(trigPin, HIGH); delayMicroseconds(10); digitalWrite(trigPin, LOW); // 接收超声波信号并计算距离 long duration = pulseIn(echoPin, HIGH); int distance = duration / 58; // 控制LED亮度 if (distance >= minDist && distance <= maxDist) { int brightness = map(distance, minDist, maxDist, 255, 0); analogWrite(ledPin, brightness); } else { analogWrite(ledPin, 0); } // 输出距离和LED亮度 Serial.print("Distance: "); Serial.print(distance); Serial.print(" cm, Brightness: "); Serial.println(analogRead(ledPin)); // 等待一段时间 delay(100);}在这代码中添加一个舵机并且在15度到165度之间循环转动,再加上两个LED是他们能实现在15到65度和65到165度之间分别在2到400cm之间亮度不一样

要实现这个功能,我们需要在原来的代码中添加一个舵机和两个LED,并根据舵机的角度和距离控制LED的亮度。下面是修改后的代码实现: ```arduino // 定义超声波传感器的引脚 const int trigPin = 2; const int echoPin = 3; // 定义LED的引脚 const int ledPin1 = 9; const int ledPin2 = 10; // 定义舵机的引脚和角度范围 const int servoPin = 5; const int minAngle = 15; const int maxAngle = 165; // 定义距离范围 const int minDist = 2; const int maxDist = 400; void setup() { // 初始化串口、LED和舵机 Serial.begin(9600); pinMode(ledPin1, OUTPUT); pinMode(ledPin2, OUTPUT); pinMode(servoPin, OUTPUT); } void loop() { // 循环转动舵机 for (int angle = minAngle; angle <= maxAngle; angle++) { // 设置舵机角度 int pulseWidth = map(angle, 0, 180, 544, 2400); digitalWrite(servoPin, HIGH); delayMicroseconds(pulseWidth); digitalWrite(servoPin, LOW); delay(20); // 发送超声波信号 digitalWrite(trigPin, LOW); delayMicroseconds(2); digitalWrite(trigPin, HIGH); delayMicroseconds(10); digitalWrite(trigPin, LOW); // 接收超声波信号并计算距离 long duration = pulseIn(echoPin, HIGH); int distance = duration / 58; // 控制LED亮度 if (angle >= minAngle && angle <= 65) { if (distance >= minDist && distance <= maxDist) { int brightness = map(distance, minDist, maxDist, 255, 0); analogWrite(ledPin1, brightness); } else { analogWrite(ledPin1, 0); } } else if (angle > 65 && angle <= maxAngle) { if (distance >= minDist && distance <= maxDist) { int brightness = map(distance, minDist, maxDist, 255, 0); analogWrite(ledPin2, brightness); } else { analogWrite(ledPin2, 0); } } // 输出距离和LED亮度 Serial.print("Angle: "); Serial.print(angle); Serial.print(", Distance: "); Serial.print(distance); Serial.print(" cm, Brightness1: "); Serial.print(analogRead(ledPin1)); Serial.print(", Brightness2: "); Serial.println(analogRead(ledPin2)); // 等待一段时间 delay(50); } } ``` 这个程序中,我们添加了一个舵机和两个LED,并在for循环中循环转动舵机。在每个角度下,我们发送超声波信号并计算距离,根据舵机的角度和距离控制LED的亮度。当舵机在15到65度之间时,我们控制ledPin1的亮度,当舵机在65到165度之间时,我们控制ledPin2的亮度。如果距离小于2厘米或大于4米,LED会完全关闭。程序还会通过串口输出角度、距离和LED亮度的值,方便调试和观察。

优化这段代码#include <Servo.h>const int trigPin = 9;const int echoPin = 10;int servoPin = 3;int angle = 0;Servo myservo;void setup() { Serial.begin(9600); pinMode(trigPin, OUTPUT); pinMode(echoPin, INPUT); myservo.attach(servoPin);}void loop() { long duration, distance; digitalWrite(trigPin, LOW); delayMicroseconds(2); digitalWrite(trigPin, HIGH); delayMicroseconds(10); digitalWrite(trigPin, LOW); duration = pulseIn(echoPin, HIGH); distance = duration * 0.034 / 2; Serial.print("Distance: "); Serial.println(distance); angle += 5; if (angle > 180) { angle = 0; } myservo.write(angle); delay(100); if (distance < 50) { for (int i = 0; i < 10; i++) { myservo.write(0); delay(200); myservo.write(180); delay(200); } }}

由于没有给出具体的代码示例,以下仅提供一些优化代码的方法: 1. 减少不必要的循环和条件判断,尽量减少代码的复杂度。 2. 尽量使用平台提供的高效 API 或函数库,避免重复造轮子。 3. 对于存储密集型的操作,可以考虑使用缓存或数据结构来提高性能。 4. 使用并行编程的技术,例如多线程或异步编程,以提高代码的效率。 5. 对于算法复杂度较高的问题,可以尝试使用更高效的算法,例如分治、贪心等。 总之,优化代码的方法很多,需要根据具体情况进行分析和选择。重要的是要注意代码的可读性和可维护性,避免过度优化导致代码难以理解和修改。

相关推荐

#include <IRremote.h> const int motorPin1 = 9; const int motorPin2 = 10; const int potPin = A0; const int trigPin = 3; const int echoPin = 4; const int ledPin = 5; const int buzzerPin = 6; const int irRecvPin = 7; int motorSpeed = 90; int distance = 0; int buzzerFreq = 0; int speed = 0; // 红外遥控器控制的风扇转速 IRrecv irrecv(irRecvPin); decode_results results; void setup() { Serial.begin(9600); pinMode(motorPin1, OUTPUT); pinMode(motorPin2, OUTPUT); pinMode(potPin, INPUT); pinMode(trigPin, OUTPUT); pinMode(echoPin, INPUT); pinMode(ledPin, OUTPUT); pinMode(buzzerPin, OUTPUT); // 初始化红外遥控器接收器 irrecv.enableIRIn(); } void loop() { int potValue = analogRead(potPin); motorSpeed = map(potValue, 0, 1023, 0, 255); analogWrite(motorPin1, motorSpeed); analogWrite(motorPin2, 0); // 接收红外遥控器的遥控信号,调整风扇转速 if (irrecv.decode(&results)) { if (results.value == 16712445 && speed < 255) { // 按“+”号键 speed = speed + 30; } else if (results.value == 16750695 && speed > 0) { // 按下“-”号键 speed = speed - 30; } irrecv.resume(); } motorSpeed = speed; analogWrite(motorPin1, motorSpeed); analogWrite(motorPin2, 0); digitalWrite(trigPin, LOW); delayMicroseconds(2); digitalWrite(trigPin, HIGH); delayMicroseconds(10); digitalWrite(trigPin, LOW); int duration = pulseIn(echoPin, HIGH); distance = duration * 0.034 / 2; if (distance < 10) { for (int i = 0; i < 5; i++) { digitalWrite(ledPin, HIGH); buzzerFreq = 2000 + i * 500; tone(buzzerPin, buzzerFreq); delay(100); digitalWrite(ledPin, LOW); noTone(buzzerPin); delay(100); } analogWrite(motorPin1, 0); analogWrite(motorPin2, 0); } else { digitalWrite(ledPin, LOW); noTone(buzzerPin); } Serial.print("distance: "); Serial.print(distance); Serial.print("cm, motor speed: "); Serial.print(motorSpeed); Serial.println(); delay(100); } 代码改错

最新推荐

recommend-type

scrapy练习 获取喜欢的书籍

主要是根据网上大神做的 项目一 https://zhuanlan.zhihu.com/p/687522335
recommend-type

基于PyTorch的Embedding和LSTM的自动写诗实验.zip

基于PyTorch的Embedding和LSTM的自动写诗实验LSTM (Long Short-Term Memory) 是一种特殊的循环神经网络(RNN)架构,用于处理具有长期依赖关系的序列数据。传统的RNN在处理长序列时往往会遇到梯度消失或梯度爆炸的问题,导致无法有效地捕捉长期依赖。LSTM通过引入门控机制(Gating Mechanism)和记忆单元(Memory Cell)来克服这些问题。 以下是LSTM的基本结构和主要组件: 记忆单元(Memory Cell):记忆单元是LSTM的核心,用于存储长期信息。它像一个传送带一样,在整个链上运行,只有一些小的线性交互。信息很容易地在其上保持不变。 输入门(Input Gate):输入门决定了哪些新的信息会被加入到记忆单元中。它由当前时刻的输入和上一时刻的隐藏状态共同决定。 遗忘门(Forget Gate):遗忘门决定了哪些信息会从记忆单元中被丢弃或遗忘。它也由当前时刻的输入和上一时刻的隐藏状态共同决定。 输出门(Output Gate):输出门决定了哪些信息会从记忆单元中输出到当前时刻的隐藏状态中。同样地,它也由当前时刻的输入和上一时刻的隐藏状态共同决定。 LSTM的计算过程可以大致描述为: 通过遗忘门决定从记忆单元中丢弃哪些信息。 通过输入门决定哪些新的信息会被加入到记忆单元中。 更新记忆单元的状态。 通过输出门决定哪些信息会从记忆单元中输出到当前时刻的隐藏状态中。 由于LSTM能够有效地处理长期依赖关系,它在许多序列建模任务中都取得了很好的效果,如语音识别、文本生成、机器翻译、时序预测等。
recommend-type

基于Java的云计算平台设计源码

云计算平台设计源码:该项目基于Java开发,包含126个文件,主要使用Java、JavaScript、HTML和CSS语言。该项目是一个云计算平台,旨在为用户提供一个高效、灵活的云计算服务,包括资源管理、虚拟化技术、分布式存储等功能,以满足不同用户的计算和存储需求。
recommend-type

grpcio-1.41.0-cp38-cp38-linux_armv7l.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】MATLAB用遗传算法改进粒子群GA-PSO算法

![MATLAB智能算法合集](https://static.fuxi.netease.com/fuxi-official/web/20221101/83f465753fd49c41536a5640367d4340.jpg) # 2.1 遗传算法的原理和实现 遗传算法(GA)是一种受生物进化过程启发的优化算法。它通过模拟自然选择和遗传机制来搜索最优解。 **2.1.1 遗传算法的编码和解码** 编码是将问题空间中的解表示为二进制字符串或其他数据结构的过程。解码是将编码的解转换为问题空间中的实际解的过程。常见的编码方法包括二进制编码、实数编码和树形编码。 **2.1.2 遗传算法的交叉和
recommend-type

openstack的20种接口有哪些

以下是OpenStack的20种API接口: 1. Identity (Keystone) API 2. Compute (Nova) API 3. Networking (Neutron) API 4. Block Storage (Cinder) API 5. Object Storage (Swift) API 6. Image (Glance) API 7. Telemetry (Ceilometer) API 8. Orchestration (Heat) API 9. Database (Trove) API 10. Bare Metal (Ironic) API 11. DNS
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依