def The_recording(): clicks = [(567, 576, 1684073622.727516), (572, 585, 1684073636.3213148), (2118, 620, 1684073648.2416933), (1537, 488, 1684073660.0487916), (1845, 416, 1684073670.305267)] for i in range(len(clicks)): # 获取当前鼠标位置 x = clicks[i][i] print(x) y = clicks[i][i + 1] print(y) # 点击 pyautogui.click(x, y)
时间: 2023-06-20 17:03:37 浏览: 177
这段代码是用 Python 中的 pyautogui 模块模拟鼠标点击操作。具体来说,代码中的 clicks 列表记录了多个鼠标点击的位置和时间戳,代码通过循环遍历 clicks 列表,获取每个点击的位置,然后通过 pyautogui.click() 函数模拟鼠标点击。其中,x = clicks[i][0], y = clicks[i][1] 用于获取当前鼠标位置,然后传给 pyautogui.click() 函数,实现点击操作。
相关问题
优化代码:def The_recording(): clicks = [(567, 576, 1684073622.727516), (572, 585, 1684073636.3213148), (2118, 620, 1684073648.2416933), (1537, 488, 1684073660.0487916), (1845, 416, 1684073670.305267)] for i in range(len(clicks)): # 获取当前鼠标位置 x = clicks[i][i] print(x) y = clicks[i][i + 1] print(y) # 点击 pyautogui.click(x, y)
可以将获取当前鼠标位置和点击操作合并在一个循环中,避免重复获取和打印鼠标位置,同时使用列表解包简化代码:
```
import pyautogui
def The_recording():
clicks = [(567, 576, 1684073622.727516), (572, 585, 1684073636.3213148), (2118, 620, 1684073648.2416933), (1537, 488, 1684073660.0487916), (1845, 416, 1684073670.305267)]
for x, y, _ in clicks:
pyautogui.click(x, y)
```
这样代码更简洁易读,同时避免了重复获取和打印鼠标位置的问题。
class HotwordDetector(object): """ Snowboy decoder to detect whether a keyword specified by `decoder_model` exists in a microphone input stream. :param decoder_model: decoder model file path, a string or a list of strings :param resource: resource file path. :param sensitivity: decoder sensitivity, a float of a list of floats. The bigger the value, the more senstive the decoder. If an empty list is provided, then the default sensitivity in the model will be used. :param audio_gain: multiply input volume by this factor. :param apply_frontend: applies the frontend processing algorithm if True. """ def __init__(self, decoder_model, resource=RESOURCE_FILE, sensitivity=[], audio_gain=1, apply_frontend=False): tm = type(decoder_model) ts = type(sensitivity) if tm is not list: decoder_model = [decoder_model] if ts is not list: sensitivity = [sensitivity] model_str = ",".join(decoder_model) self.detector = snowboydetect.SnowboyDetect( resource_filename=resource.encode(), model_str=model_str.encode()) self.detector.SetAudioGain(audio_gain) self.detector.ApplyFrontend(apply_frontend) self.num_hotwords = self.detector.NumHotwords() if len(decoder_model) > 1 and len(sensitivity) == 1: sensitivity = sensitivity * self.num_hotwords if len(sensitivity) != 0: assert self.num_hotwords == len(sensitivity), \ "number of hotwords in decoder_model (%d) and sensitivity " \ "(%d) does not match" % (self.num_hotwords, len(sensitivity)) sensitivity_str = ",".join([str(t) for t in sensitivity]) if len(sensitivity) != 0: self.detector.SetSensitivity(sensitivity_str.encode()) self.ring_buffer = RingBuffer( self.detector.NumChannels() * self.detector.SampleRate() * 5) def start(self, detected_callback=play_audio_file, interrupt_check=lambda: False, sleep_time=0.03, audio_recorder_callback=None, silent_count_threshold=15, recording_timeout=100):
这段代码看起来像是一个热词检测器类的初始化方法。参数包括 `decoder_model`,一个解码器模型文件的路径;`resource`,资源文件的路径;`sensitivity`,一个或多个检测器灵敏度的浮点数;`audio_gain`,音频增益的倍数;`apply_frontend`,是否应用前端处理算法。这个类的实例化会生成一个 SnowboyDetect 对象,用于检测语音流中是否存在指定的关键词。类还包括了一些方法,用于开始检测、回调处理、中断检查等。
阅读全文