nystrom谱聚类代码
时间: 2023-07-09 21:17:42 浏览: 162
以下是Python中使用Nystrom谱聚类的示例代码:
```python
import numpy as np
from sklearn.cluster import KMeans
from sklearn.metrics.pairwise import rbf_kernel
class NystromSpectralClustering:
def __init__(self, n_clusters, n_components=None, gamma=None, random_state=None):
self.n_clusters = n_clusters
self.n_components = n_components
self.gamma = gamma
self.random_state = random_state
self.eigenvecs_ = None
self.kmeans_ = None
def fit(self, X):
n_samples, n_features = X.shape
# 1. Random subset of the data
if self.n_components is None:
self.n_components = n_samples // 2
if self.random_state is not None:
random_state = np.random.RandomState(self.random_state)
else:
random_state = np.random
idx = random_state.permutation(n_samples)[:self.n_components]
# 2. Compute kernel matrix
if self.gamma is None:
self.gamma = 1.0 / n_features
K = rbf_kernel(X[idx], gamma=self.gamma)
# 3. Compute approximate eigenvalues and eigenvectors of K
eigenvalues, eigenvectors = np.linalg.eigh(K)
self.eigenvecs_ = eigenvectors[:, ::-1]
# 4. Cluster rows of eigenvectors with k-means
self.kmeans_ = KMeans(n_clusters=self.n_clusters, random_state=self.random_state)
self.kmeans_.fit(self.eigenvecs_)
def predict(self, X):
K = rbf_kernel(X, self.eigenvecs_, gamma=self.gamma)
return self.kmeans_.predict(K)
```
使用示例:
```python
from sklearn.datasets import make_circles
import matplotlib.pyplot as plt
X, y = make_circles(n_samples=1000, noise=0.05, factor=0.5, random_state=42)
model = NystromSpectralClustering(n_clusters=2, n_components=50, gamma=10.0, random_state=42)
model.fit(X)
y_pred = model.predict(X)
plt.scatter(X[:, 0], X[:, 1], c=y_pred)
plt.show()
```
在这个例子中,我们生成了一个二维环形数据集,并使用Nystrom谱聚类将其分成两个簇。
阅读全文