nn.LayerNorm2d和nn.BatchNorm2d

时间: 2023-10-26 09:32:17 浏览: 192
PDF

Pytorch损失函数nn.NLLLoss2d()用法说明

nn.LayerNorm2d和nn.BatchNorm2d是PyTorch中常用的归一化操作。 nn.BatchNorm2d是一种批量归一化操作,对于输入的特征图,在每个通道上进行归一化,使得每个通道的均值为0,方差为1,从而有助于解决梯度消失和梯度爆炸问题,加速收敛,提高模型的泛化能力。同时,BatchNorm还具有一定的正则化效果,可以减小过拟合的风险。 nn.LayerNorm2d是一种层归一化操作,对于输入的特征图,在每个样本上进行归一化,使得每个样本的均值为0,方差为1,从而有助于解决协变量偏移问题。在训练小样本数据时,层归一化比批量归一化更稳定、更有效,但是它需要更多的计算资源和更多的内存。 因此,一般来说,当训练数据较大时,使用批量归一化;当训练数据较小时,使用层归一化。同时,它们也可以根据具体情况结合使用。
阅读全文

相关推荐

class Generator(nn.Module): def __init__(self): super(Generator, self).__init__() self.encoder = nn.Sequential( nn.Conv2d(6, 64, 3, stride=2, padding=1), nn.BatchNorm2d(64), nn.LeakyReLU(0.2), nn.Conv2d(64, 128, 3, stride=2, padding=1), nn.BatchNorm2d(128), nn.LeakyReLU(0.2), nn.Conv2d(128, 256, 3, stride=2, padding=1), nn.BatchNorm2d(256), nn.LeakyReLU(0.2), nn.Conv2d(256, 512, 3, stride=2, padding=1), nn.BatchNorm2d(512), nn.LeakyReLU(0.2), nn.Conv2d(512, 4000, 1), nn.BatchNorm2d(4000), nn.LeakyReLU(0.2) ) self.decoder = nn.Sequential( nn.ConvTranspose2d(4000, 512, 3, stride=2, padding=1, output_padding=1), nn.BatchNorm2d(512), nn.LeakyReLU(0.2), nn.ConvTranspose2d(512, 256, 3, stride=2, padding=1, output_padding=1), nn.BatchNorm2d(256), nn.LeakyReLU(0.2), nn.ConvTranspose2d(256, 128, 3, stride=2, padding=1, output_padding=1), nn.BatchNorm2d(128), nn.LeakyReLU(0.2), nn.ConvTranspose2d(128, 64, 3, stride=2, padding=1, output_padding=1), nn.BatchNorm2d(64), nn.LeakyReLU(0.2), nn.ConvTranspose2d(64, 3, 3, stride=1, padding=1), nn.Tanh() ) def forward(self, x1, x2): x = torch.cat([x1, x2], dim=1) x = self.encoder(x) x = self.decoder(x) return x class Discriminator(nn.Module): def __init__(self): super(Discriminator, self).__init__() self.conv = nn.Sequential( nn.Conv2d(3, 64, 4, stride=2, padding=1), nn.BatchNorm2d(64), nn.LeakyReLU(0.2), nn.Conv2d(64, 128, 4, stride=2, padding=1), nn.BatchNorm2d(128), nn.LeakyReLU(0.2), nn.Conv2d(128, 256, 4, stride=2, padding=1), nn.BatchNorm2d(256), nn.LeakyReLU(0.2), nn.Conv2d(256, 512, 4, stride=2, padding=1), nn.BatchNorm2d(512), nn.LeakyReLU(0.2), nn.Conv2d(512, 1, 4, stride=1), nn.Sigmoid() ) def forward(self, x): x = self.conv(x) return x 上述网络结构是什么GAN

pretrained_dict = torch.load('E:/fin/models/gen.pth') print(pretrained_dict.keys())上述语句打印出的键值dict_keys(['iteration', 'generator']) 怎么和下列生成器对齐:class ContextEncoder(nn.Module): def __init__(self): super(ContextEncoder, self).__init__() # 编码器 self.encoder = nn.Sequential( nn.Conv2d(4, 64, kernel_size=4, stride=2, padding=1), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(64, 128, kernel_size=4, stride=2, padding=1), nn.BatchNorm2d(128), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(128, 256, kernel_size=4, stride=2, padding=1), nn.BatchNorm2d(256), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(256, 512, kernel_size=4, stride=2, padding=1), nn.BatchNorm2d(512), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(512, 512, kernel_size=4, stride=2, padding=1), nn.BatchNorm2d(512), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(512, 512, kernel_size=4, stride=2, padding=1), nn.BatchNorm2d(512), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(512, 512, kernel_size=4, stride=2, padding=1), nn.BatchNorm2d(512), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(512, 512, kernel_size=4, stride=2, padding=1), nn.BatchNorm2d(512), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(512, 512, kernel_size=4, stride=2, padding=1), nn.BatchNorm2d(512), nn.LeakyReLU(0.2, inplace=True), ) # 解码器 self.decoder = nn.Sequential( nn.ConvTranspose2d(512, 512, kernel_size=4, stride=2, padding=1), nn.BatchNorm2d(512), nn.ReLU(inplace=True), nn.ConvTranspose2d(512, 512, kernel_size=4, stride=2, padding=1), nn.BatchNorm2d(512), nn.ReLU(inplace=True), nn.ConvTranspose2d(512, 512, kernel_size=4, stride=2, padding=1), nn.BatchNorm2d(512), nn.ReLU(inplace=True), nn.ConvTranspose2d(512, 512, kernel_size=4, stride=2, padding=1), nn.BatchNorm2d(512), nn.ReLU(inplace=True), nn.ConvTranspose2d(512, 256, kernel_size=4, stride=2, padding=1), nn.BatchNorm2d(256), nn.ReLU(inplace=True), nn.ConvTranspose2d(256, 128, kernel_size=4, stride=2, padding=1), nn.BatchNorm2d(128), nn.ReLU(inplace=True), nn.ConvTranspose2d(128, 64, kernel_size=4, stride=2, padding=1), nn.BatchNorm2d(64), nn.ReLU(inplace=True), nn.ConvTranspose2d(64, 3, kernel_size=4, stride=2, padding=1), nn.Sigmoid(), ) def forward(self, x): x = self.encoder(x) x = self.decoder(x) return x

加载InpaintingModel_gen.pth预训练模型时出现:RuntimeError: Error(s) in loading state_dict for ContextEncoder: Missing key(s) in state_dict: "encoder.0.weight", "encoder.0.bias", "encoder.2.weight", "encoder.2.bias", "encoder.3.weight", "encoder.3.bias", "encoder.3.running_mean", "encoder.3.running_var", "encoder.5.weight", "encoder.5.bias", "encoder.6.weight", "encoder.6.bias", "encoder.6.running_mean", "encoder.6.running_var",...并且载入的模型为:class ContextEncoder(nn.Module): def init(self): super(ContextEncoder, self).init() # 编码器 self.encoder = nn.Sequential( nn.Conv2d(4, 64, kernel_size=4, stride=2, padding=1), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(64, 128, kernel_size=4, stride=2, padding=1), nn.BatchNorm2d(128), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(128, 256, kernel_size=4, stride=2, padding=1), nn.BatchNorm2d(256), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(256, 512, kernel_size=4, stride=2, padding=1), nn.BatchNorm2d(512), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(512, 512, kernel_size=4, stride=2, padding=1), nn.BatchNorm2d(512), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(512, 512, kernel_size=4, stride=2, padding=1), nn.BatchNorm2d(512), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(512, 512, kernel_size=4, stride=2, padding=1), nn.BatchNorm2d(512), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(512, 512, kernel_size=4, stride=2, padding=1), nn.BatchNorm2d(512), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(512, 512, kernel_size=4, stride=2, padding=1), nn.BatchNorm2d(512), nn.LeakyReLU(0.2, inplace=True), ) # 解码器 self.decoder = nn.Sequential( nn.ConvTranspose2d(512, 512, kernel_size=4, stride=2, padding=1), nn.BatchNorm2d(512), nn.ReLU(inplace=True), nn.ConvTranspose2d(512, 512, kernel_size=4, stride=2, padding=1), nn.BatchNorm2d(512), nn.ReLU(inplace=True), nn.ConvTranspose2d(512, 512, kernel_size=4, stride=2, padding=1), nn.BatchNorm2d(512), nn.ReLU(inplace=True), nn.ConvTranspose2d(512, 512, kernel_size=4, stride=2, padding=1), nn.BatchNorm2d(512), nn.ReLU(inplace=True), nn.ConvTranspose2d(512, 256, kernel_size=4, stride=2, padding=1), nn.BatchNorm2d(256), nn.ReLU(inplace=True), nn.ConvTranspose2d(256, 128, kernel_size=4, stride=2, padding=1), nn.BatchNorm2d(128), nn.ReLU(inplace=True), nn.ConvTranspose2d(128, 64, kernel_size=4, stride=2, padding=1), nn.BatchNorm2d(64), nn.ReLU(inplace=True), nn.ConvTranspose2d(64, 3, kernel_size=4, stride=2, padding=1), nn.Sigmoid(), ) def forward(self, x): x = self.encoder(x) x = self.decoder(x) return x 要怎么改

将下列生成器改造成能够匹配edge-connect中的InpaintingModel的预训练模型键值的结构:class Generator(nn.Module): def init(self): super(Generator, self).init() self.encoder = nn.Sequential( nn.Conv2d(3, 64, 3, stride=2, padding=1), nn.BatchNorm2d(64), nn.LeakyReLU(0.2), nn.Conv2d(64, 128, 3, stride=2, padding=1), nn.BatchNorm2d(128), nn.LeakyReLU(0.2), nn.Conv2d(128, 256, 3, stride=2, padding=1), nn.BatchNorm2d(256), nn.LeakyReLU(0.2), nn.Conv2d(256, 512, 3, stride=2, padding=1), nn.BatchNorm2d(512), nn.LeakyReLU(0.2), nn.Conv2d(512, 4000, 1), nn.BatchNorm2d(4000), nn.LeakyReLU(0.2) ) self.decoder = nn.Sequential( nn.ConvTranspose2d(4000, 512, 3, stride=2, padding=1, output_padding=1), nn.BatchNorm2d(512), nn.LeakyReLU(0.2), nn.ConvTranspose2d(512, 256, 3, stride=2, padding=1, output_padding=1), nn.BatchNorm2d(256), nn.LeakyReLU(0.2), nn.ConvTranspose2d(256, 128, 3, stride=2, padding=1, output_padding=1), nn.BatchNorm2d(128), nn.LeakyReLU(0.2), nn.ConvTranspose2d(128, 64, 3, stride=2, padding=1, output_padding=1), nn.BatchNorm2d(64), nn.LeakyReLU(0.2), nn.ConvTranspose2d(64, 3, 3, stride=1, padding=1), nn.Tanh() ) def forward(self, x): x = self.encoder(x) x = self.decoder(x) return x 另外修复部分代码定义为:mask = cv.inRange(img, (0, 0, 0), (1, 1, 1)) # 转换为张量 image_tensor = transforms.ToTensor()(img) mask_tensor = transforms.ToTensor()(mask) # 扩展维度 image_tensor = image_tensor.unsqueeze(0) mask_tensor = mask_tensor.unsqueeze(0) generator = Generator() load_edgeconnect_weights(generator, 'E:/fin/models/gen.pth') image_tensor = image_tensor.cuda() mask_tensor = mask_tensor.cuda() generator = generator.cuda() with torch.no_grad(): output_tensor = generator(image_tensor, mask_tensor)

基于300条数据用CNN多分类预测时,训练精度特别差,代码如下class Model(Module): def __init__(self): super(Model, self).__init__() self.conv1_1 = nn.Conv2d(in_channels=3,out_channels=64,kernel_size=(3,3),padding=1) self.bn1_1 = nn.BatchNorm2d(64) self.relu1_1 = nn.ReLU() self.pool1 = nn.MaxPool2d(kernel_size=4, stride=4) self.conv2_1 = nn.Conv2d(in_channels=64,out_channels=128,kernel_size=(3,3),padding=1) self.bn2_1 = nn.BatchNorm2d(128) self.relu2_1 = nn.ReLU() self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv3_1 = nn.Conv2d(in_channels=128,out_channels=256,kernel_size=(3,3),padding=1) self.bn3_1 = nn.BatchNorm2d(256) self.relu3_1 = nn.ReLU() self.pool3 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv4_1 = nn.Conv2d(in_channels=256,out_channels=512,kernel_size=(3,3)) self.bn4_1 = nn.BatchNorm2d(512) self.relu4_1 = nn.ReLU() self.conv4_2 = nn.Conv2d(in_channels=512,out_channels=512,kernel_size=(3,3)) self.bn4_2 = nn.BatchNorm2d(512) self.relu4_2 = nn.ReLU() self.pool4 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv5_1 = nn.Conv2d(in_channels=512,out_channels=512,kernel_size=(3,3)) self.bn5_1 = nn.BatchNorm2d(512) self.relu5_1 = nn.ReLU() self.conv5_2 = nn.Conv2d(in_channels=512,out_channels=512,kernel_size=(3,3)) self.bn5_2 = nn.BatchNorm2d(512) self.relu5_2 = nn.ReLU() self.pool5 = nn.AdaptiveAvgPool2d(5) self.dropout1 = nn.Dropout(p=0.3) self.fc1=nn.Linear(512*5*5,512) self.relu6=nn.ReLU() self.dropout2 = nn.Dropout(p=0.2) self.fc2=nn.Linear(512,141) ,具体如何修改代码

class TPCNN(nn.Module): def __init__(self, num_class=10, head_payload=False): super(TPCNN, self).__init__() # 上 self.uconv1 = nn.Sequential( # nn.Conv2d(1, 16, kernel_size=3, stride=1, padding=1, dilation=1, bias=True), nn.BatchNorm2d(16, eps=1e-05, momentum=0.9, affine=True), nn.ReLU(), ) self.uconv2 = nn.Sequential( # nn.Conv2d(16, 32, kernel_size=3, stride=2, padding=1, dilation=1, bias=True), nn.BatchNorm2d(32, eps=1e-05, momentum=0.9, affine=True), nn.ReLU(), ) # 中 self.mconv1 = nn.Sequential( # nn.Conv2d(1, 32, kernel_size=3, stride=2, padding=1, dilation=1, bias=True), nn.BatchNorm2d(32, eps=1e-05, momentum=0.9, affine=True), nn.ReLU(), ) # 下 self.dconv1 = nn.Sequential( # nn.Conv2d(1, 32, kernel_size=3, stride=1, padding=1, dilation=1, bias=True), nn.BatchNorm2d(32, eps=1e-05, momentum=0.9, affine=True), nn.ReLU(), nn.MaxPool2d(kernel_size=2) ) self.uconv3 = nn.Sequential( # nn.Conv2d(96, 128, kernel_size=3, stride=1, padding=1, dilation=1, bias=True), nn.BatchNorm2d(128, eps=1e-05, momentum=0.9, affine=True), nn.ReLU(), ) self.mconv2 = nn.Sequential( # nn.Conv2d(96, 128, kernel_size=3, stride=2, padding=1, dilation=1, bias=True), nn.BatchNorm2d(128, eps=1e-05, momentum=0.9, affine=True), nn.ReLU(), ) self.dconv2 = nn.Sequential( # nn.Conv2d(96, 128, kernel_size=3, stride=1, padding=1, dilation=1, bias=True), nn.BatchNorm2d(128, eps=1e-05, momentum=0.9, affine=True), nn.ReLU(), ) self.uconv4 = nn.Sequential( # nn.Conv2d(256, 512, kernel_size=3, stride=2, padding=1, dilation=1, bias=True), nn.BatchNorm2d(512, eps=1e-05, momentum=0.9, affine=True), nn.ReLU(), ) self.globalconv1 = nn.Sequential( nn.Conv2d(896, 1024, kernel_size=3, stride=1, padding=1), nn.BatchNorm2d(1024, eps=1e-05, momentum=0.9, affine=True), nn.ReLU() ) self.dmaxpool = nn.MaxPool2d(kernel_size=2,padding=1) # self.lstm1 = nn.LSTM(256,512, 2) # self.lstm2 = nn.LSTM(self.i_size*2,self.i_size*2, 2) self.avpool = nn.AdaptiveAvgPool2d(2) # self.globallstm = nn.LSTM(512, 256, 1) self.fc1 = nn.Linear(1024*2*2, 512) self.fc2 = nn.Linear(512, num_class)

最新推荐

recommend-type

对tensorflow中tf.nn.conv1d和layers.conv1d的区别详解

这个函数会将输入张量和过滤器张量进行reshape,然后调用`tf.nn.conv2d`来完成实际的一维卷积操作,因为一维卷积可以视为二维卷积的一个特殊情况。返回的结果同样是一个张量,形状为[batch, out_width, out_channels...
recommend-type

Tensorflow tf.nn.atrous_conv2d如何实现空洞卷积的

在TensorFlow库中,`tf.nn.atrous_conv2d`函数用于实现空洞卷积,这是一种特殊形式的卷积操作,能够扩大模型的感受野,同时避免池化带来的信息丢失。空洞卷积(也称为膨胀卷积或带孔卷积)通过在卷积核的元素之间...
recommend-type

YOLO算法-城市电杆数据集-496张图像带标签-电杆.zip

YOLO系列算法目标检测数据集,包含标签,可以直接训练模型和验证测试,数据集已经划分好,包含数据集配置文件data.yaml,适用yolov5,yolov8,yolov9,yolov7,yolov10,yolo11算法; 包含两种标签格:yolo格式(txt文件)和voc格式(xml文件),分别保存在两个文件夹中,文件名末尾是部分类别名称; yolo格式:<class> <x_center> <y_center> <width> <height>, 其中: <class> 是目标的类别索引(从0开始)。 <x_center> 和 <y_center> 是目标框中心点的x和y坐标,这些坐标是相对于图像宽度和高度的比例值,范围在0到1之间。 <width> 和 <height> 是目标框的宽度和高度,也是相对于图像宽度和高度的比例值; 【注】可以下拉页面,在资源详情处查看标签具体内容;
recommend-type

(177406840)JAVA图书管理系统毕业设计(源代码+论文).rar

JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代
recommend-type

(35734838)信号与系统实验一实验报告

内容来源于网络分享,如有侵权请联系我删除。另外如果没有积分的同学需要下载,请私信我。
recommend-type

Java毕业设计项目:校园二手交易网站开发指南

资源摘要信息:"Java是一种高性能、跨平台的面向对象编程语言,由Sun Microsystems(现为Oracle Corporation)的James Gosling等人在1995年推出。其设计理念是为了实现简单性、健壮性、可移植性、多线程以及动态性。Java的核心优势包括其跨平台特性,即“一次编写,到处运行”(Write Once, Run Anywhere),这得益于Java虚拟机(JVM)的存在,它提供了一个中介,使得Java程序能够在任何安装了相应JVM的设备上运行,无论操作系统如何。 Java是一种面向对象的编程语言,这意味着它支持面向对象编程(OOP)的三大特性:封装、继承和多态。封装使得代码模块化,提高了安全性;继承允许代码复用,简化了代码的复杂性;多态则增强了代码的灵活性和扩展性。 Java还具有内置的多线程支持能力,允许程序同时处理多个任务,这对于构建服务器端应用程序、网络应用程序等需要高并发处理能力的应用程序尤为重要。 自动内存管理,特别是垃圾回收机制,是Java的另一大特性。它自动回收不再使用的对象所占用的内存资源,这样程序员就无需手动管理内存,从而减轻了编程的负担,并减少了因内存泄漏而导致的错误和性能问题。 Java广泛应用于企业级应用开发、移动应用开发(尤其是Android平台)、大型系统开发等领域,并且有大量的开源库和框架支持,例如Spring、Hibernate、Struts等,这些都极大地提高了Java开发的效率和质量。 标签中提到的Java、毕业设计、课程设计和开发,意味着文件“毕业设计---社区(校园)二手交易网站.zip”中的内容可能涉及到Java语言的编程实践,可能是针对学生的课程设计或毕业设计项目,而开发则指出了这些内容的具体活动。 在文件名称列表中,“SJT-code”可能是指该压缩包中包含的是一个特定的项目代码,即社区(校园)二手交易网站的源代码。这类网站通常需要实现用户注册、登录、商品发布、浏览、交易、评价等功能,并且需要后端服务器支持,如数据库连接和事务处理等。考虑到Java的特性,网站的开发可能使用了Java Web技术栈,如Servlet、JSP、Spring Boot等,以及数据库技术,如MySQL或MongoDB等。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【MVC标准化:肌电信号处理的终极指南】:提升数据质量的10大关键步骤与工具

![MVC标准化](https://img-blog.csdn.net/20160221141956498) # 摘要 MVC标准化是肌电信号处理中确保数据质量的重要步骤,它对于提高测量结果的准确性和可重复性至关重要。本文首先介绍肌电信号的生理学原理和MVC标准化理论,阐述了数据质量的重要性及影响因素。随后,文章深入探讨了肌电信号预处理的各个环节,包括噪声识别与消除、信号放大与滤波技术、以及基线漂移的校正方法。在提升数据质量的关键步骤部分,本文详细描述了信号特征提取、MVC标准化的实施与评估,并讨论了数据质量评估与优化工具。最后,本文通过实验设计和案例分析,展示了MVC标准化在实践应用中的具
recommend-type

能否提供一个在R语言中执行Framingham数据集判别分析的详细和完整的代码示例?

当然可以。在R语言中,Framingham数据集是一个用于心血管疾病研究的经典数据集。以下是使用`ggfortify`包结合` factoextra`包进行判别分析的一个基本步骤: 首先,你需要安装所需的库,如果尚未安装,可以使用以下命令: ```r install.packages(c("ggfortify", "factoextra")) ``` 然后加载所需的数据集并做预处理。Framingham数据集通常存储在`MASS`包中,你可以通过下面的代码加载: ```r library(MASS) data(Framingham) ``` 接下来,我们假设你已经对数据进行了适当的清洗和转换
recommend-type

Blaseball Plus插件开发与构建教程

资源摘要信息:"Blaseball Plus" Blaseball Plus是一个与游戏Blaseball相关的扩展项目,该项目提供了一系列扩展和改进功能,以增强Blaseball游戏体验。在这个项目中,JavaScript被用作主要开发语言,通过在package.json文件中定义的脚本来完成构建任务。项目说明中提到了开发环境的要求,即在20.09版本上进行开发,并且提供了一个flake.nix文件来复制确切的构建环境。虽然Nix薄片是一项处于工作状态(WIP)的功能且尚未完全记录,但可能需要用户自行安装系统依赖项,其中列出了Node.js和纱(Yarn)的特定版本。 ### 知识点详细说明: #### 1. Blaseball游戏: Blaseball是一个虚构的棒球游戏,它在互联网社区中流行,其特点是独特的规则、随机事件和社区参与的元素。 #### 2. 扩展开发: Blaseball Plus是一个扩展,它可能是为在浏览器中运行的Blaseball游戏提供额外功能和改进的软件。扩展开发通常涉及编写额外的代码来增强现有软件的功能。 #### 3. JavaScript编程语言: JavaScript是一种高级的、解释执行的编程语言,被广泛用于网页和Web应用的客户端脚本编写,是开发Web扩展的关键技术之一。 #### 4. package.json文件: 这是Node.js项目的核心配置文件,用于声明项目的各种配置选项,包括项目名称、版本、依赖关系以及脚本命令等。 #### 5.构建脚本: 描述中提到的脚本,如`build:dev`、`build:prod:unsigned`和`build:prod:signed`,这些脚本用于自动化构建过程,可能包括编译、打包、签名等步骤。`yarn run`命令用于执行这些脚本。 #### 6. yarn包管理器: Yarn是一个快速、可靠和安全的依赖项管理工具,类似于npm(Node.js的包管理器)。它允许开发者和项目管理依赖项,通过简单的命令行界面可以轻松地安装和更新包。 #### 7. Node.js版本管理: 项目要求Node.js的具体版本,这里是14.9.0版本。管理特定的Node.js版本是重要的,因为在不同版本间可能会存在API变化或其他不兼容问题,这可能会影响扩展的构建和运行。 #### 8. 系统依赖项的安装: 文档提到可能需要用户手动安装系统依赖项,这在使用Nix薄片时尤其常见。Nix薄片(Nix flakes)是一个实验性的Nix特性,用于提供可复现的开发环境和构建设置。 #### 9. Web扩展的工件放置: 构建后的工件放置在`addon/web-ext-artifacts/`目录中,表明这可能是一个基于WebExtension的扩展项目。WebExtension是一种跨浏览器的扩展API,用于创建浏览器扩展。 #### 10. 扩展部署: 描述中提到了两种不同类型的构建版本:开发版(dev)和生产版(prod),其中生产版又分为未签名(unsigned)和已签名(signed)版本。这些不同的构建版本用于不同阶段的开发和发布。 通过这份文档,我们能够了解到Blaseball Plus项目的开发环境配置、构建脚本的使用、依赖管理工具的运用以及Web扩展的基本概念和部署流程。这些知识点对于理解JavaScript项目开发和扩展构建具有重要意义。