用C语言实现最常见的10种排序算法,并介绍时间复杂度、空间复杂度
时间: 2024-05-13 21:15:30 浏览: 104
各种常用排序算法的C语言实现
好的,以下是最常见的10种排序算法的C语言实现及其时间复杂度和空间复杂度的介绍:
1. 冒泡排序(Bubble Sort)
时间复杂度:O(n^2)
空间复杂度:O(1)
```
void bubbleSort(int arr[], int n) {
for (int i = 0; i < n - 1; i++) {
for (int j = 0; j < n - i - 1; j++) {
if (arr[j] > arr[j + 1]) {
int temp = arr[j];
arr[j] = arr[j + 1];
arr[j + 1] = temp;
}
}
}
}
```
2. 选择排序(Selection Sort)
时间复杂度:O(n^2)
空间复杂度:O(1)
```
void selectionSort(int arr[], int n) {
for (int i = 0; i < n - 1; i++) {
int minIndex = i;
for (int j = i + 1; j < n; j++) {
if (arr[j] < arr[minIndex]) {
minIndex = j;
}
}
int temp = arr[i];
arr[i] = arr[minIndex];
arr[minIndex] = temp;
}
}
```
3. 插入排序(Insertion Sort)
时间复杂度:O(n^2)
空间复杂度:O(1)
```
void insertionSort(int arr[], int n) {
for (int i = 1; i < n; i++) {
int temp = arr[i];
int j = i - 1;
while (j >= 0 && arr[j] > temp) {
arr[j + 1] = arr[j];
j--;
}
arr[j + 1] = temp;
}
}
```
4. 希尔排序(Shell Sort)
时间复杂度:O(n^2)
空间复杂度:O(1)
```
void shellSort(int arr[], int n) {
for (int gap = n / 2; gap > 0; gap /= 2) {
for (int i = gap; i < n; i++) {
int temp = arr[i];
int j;
for (j = i; j >= gap && arr[j - gap] > temp; j -= gap) {
arr[j] = arr[j - gap];
}
arr[j] = temp;
}
}
}
```
5. 归并排序(Merge Sort)
时间复杂度:O(nlogn)
空间复杂度:O(n)
```
void merge(int arr[], int l, int m, int r) {
int n1 = m - l + 1;
int n2 = r - m;
int L[n1], R[n2];
for (int i = 0; i < n1; i++) {
L[i] = arr[l + i];
}
for (int j = 0; j < n2; j++) {
R[j] = arr[m + 1 + j];
}
int i = 0, j = 0, k = l;
while (i < n1 && j < n2) {
if (L[i] <= R[j]) {
arr[k] = L[i];
i++;
} else {
arr[k] = R[j];
j++;
}
k++;
}
while (i < n1) {
arr[k] = L[i];
i++;
k++;
}
while (j < n2) {
arr[k] = R[j];
j++;
k++;
}
}
void mergeSort(int arr[], int l, int r) {
if (l < r) {
int m = l + (r - l) / 2;
mergeSort(arr, l, m);
mergeSort(arr, m + 1, r);
merge(arr, l, m, r);
}
}
```
6. 快速排序(Quick Sort)
时间复杂度:O(nlogn)
空间复杂度:O(logn)
```
int partition(int arr[], int low, int high) {
int pivot = arr[high];
int i = low - 1;
for (int j = low; j <= high - 1; j++) {
if (arr[j] < pivot) {
i++;
int temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
}
int temp = arr[i + 1];
arr[i + 1] = arr[high];
arr[high] = temp;
return i + 1;
}
void quickSort(int arr[], int low, int high) {
if (low < high) {
int pi = partition(arr, low, high);
quickSort(arr, low, pi - 1);
quickSort(arr, pi + 1, high);
}
}
```
7. 堆排序(Heap Sort)
时间复杂度:O(nlogn)
空间复杂度:O(1)
```
void heapify(int arr[], int n, int i) {
int largest = i;
int l = 2 * i + 1;
int r = 2 * i + 2;
if (l < n && arr[l] > arr[largest]) {
largest = l;
}
if (r < n && arr[r] > arr[largest]) {
largest = r;
}
if (largest != i) {
int temp = arr[i];
arr[i] = arr[largest];
arr[largest] = temp;
heapify(arr, n, largest);
}
}
void heapSort(int arr[], int n) {
for (int i = n / 2 - 1; i >= 0; i--) {
heapify(arr, n, i);
}
for (int i = n - 1; i > 0; i--) {
int temp = arr[0];
arr[0] = arr[i];
arr[i] = temp;
heapify(arr, i, 0);
}
}
```
8. 计数排序(Counting Sort)
时间复杂度:O(n+k)
空间复杂度:O(k)
```
void countingSort(int arr[], int n, int k) {
int count[k];
for (int i = 0; i < k; i++) {
count[i] = 0;
}
for (int i = 0; i < n; i++) {
count[arr[i]]++;
}
for (int i = 1; i < k; i++) {
count[i] += count[i - 1];
}
int output[n];
for (int i = n - 1; i >= 0; i--) {
output[count[arr[i]] - 1] = arr[i];
count[arr[i]]--;
}
for (int i = 0; i < n; i++) {
arr[i] = output[i];
}
}
```
9. 桶排序(Bucket Sort)
时间复杂度:O(n+k)
空间复杂度:O(n+k)
```
void bucketSort(int arr[], int n, int k) {
int buckets[k];
for (int i = 0; i < k; i++) {
buckets[i] = 0;
}
for (int i = 0; i < n; i++) {
buckets[arr[i]]++;
}
int index = 0;
for (int i = 0; i < k; i++) {
for (int j = 0; j < buckets[i]; j++) {
arr[index++] = i;
}
}
}
```
10. 基数排序(Radix Sort)
时间复杂度:O(d*(n+k))
空间复杂度:O(n+k)
```
int getMax(int arr[], int n) {
int max = arr[0];
for (int i = 1; i < n; i++) {
if (arr[i] > max) {
max = arr[i];
}
}
return max;
}
void countSort(int arr[], int n, int exp) {
int output[n];
int count[10] = { 0 };
for (int i = 0; i < n; i++) {
count[(arr[i] / exp) % 10]++;
}
for (int i = 1; i < 10; i++) {
count[i] += count[i - 1];
}
for (int i = n - 1; i >= 0; i--) {
output[count[(arr[i] / exp) % 10] - 1] = arr[i];
count[(arr[i] / exp) % 10]--;
}
for (int i = 0; i < n; i++) {
arr[i] = output[i];
}
}
void radixSort(int arr[], int n) {
int max = getMax(arr, n);
for (int exp = 1; max / exp > 0; exp *= 10) {
countSort(arr, n, exp);
}
}
```
以上就是最常见的10种排序算法的C语言实现及其时间复杂度和空间复杂度的介绍了。
阅读全文