Softmax(dim=2)举例e

时间: 2024-05-03 16:22:29 浏览: 30
假设有一个形状为(2, 3)的张量a,其中每个元素表示一个类别的得分,可以使用softmax函数来将得分转换为概率分布。在这里,dim=2表示在第二个维度上进行softmax操作。 例如: ```python import torch a = torch.tensor([[1.0, 2.0, 3.0], [2.0, 1.0, 0.5]]) print(a) # tensor([[1.0000, 2.0000, 3.0000], # [2.0000, 1.0000, 0.5000]]) p = torch.softmax(a, dim=1) print(p) # tensor([[0.0900, 0.2447, 0.6652], # [0.5761, 0.3983, 0.0256]]) ``` 在这个例子中,我们使用torch.softmax函数对张量a进行softmax操作,dim=1表示在第二个维度上进行操作。最终得到的概率分布张量p的形状与a相同,其中每个元素表示对应类别的概率。例如,p[0, 2]表示第一个样本属于第三个类别的概率为0.6652。
相关问题

def multi_head_attention(input_data, head_num): # 定义时间步注意力机制 attention_time = TimeDistributed(Dense(1, activation='tanh'))(input_data) attention_time = Activation('softmax')(attention_time) # 定义特征维度注意力机制 attention_dim_list = [] for i in range(head_num): attention_dim = Dense(int(input_data.shape[-1]), activation='tanh')(input_data) attention_dim = Activation('softmax')(attention_dim) attention_dim = multiply([attention_dim, attention_time]) attention_dim_list.append(attention_dim) # 计算多头注意力 context_list = [] for i in range(head_num): context = Dot(axes=1)([attention_dim_list[i], input_data]) context_list.append(context) context = Concatenate()(context_list) return context 这部分代码可以用做你举例的多头部分吧 ?

是的,这段代码是一个用于实现多头注意力机制的函数。它的输入参数包括 input_data(输入数据)和 head_num(头数),其中 input_data 的形状为 (batch_size, time_steps, input_dim)。该函数的输出是一个多头注意力机制的结果,即加权和后的上下文向量,其形状为 (batch_size, time_steps, input_dim * head_num)。 具体来说,这个函数首先对输入数据进行时间步注意力机制的计算,得到一个形状为 (batch_size, time_steps, 1) 的注意力分布张量 attention_time。然后,对于每个头,它都会分别计算一个形状为 (batch_size, time_steps, input_dim) 的注意力分布张量 attention_dim,该张量是通过对输入数据进行全连接层和 softmax 操作得到的。最后,将 attention_dim 和 attention_time 进行点乘操作,并将结果加入到一个列表中。计算完所有头的注意力分布张量后,将它们分别与输入数据进行点乘操作,并将所有头的结果拼接在一起得到上下文向量 context。

from keras import backend as K from keras.engine.topology import Layer class Self_Attention(Layer): def init(self, output_dim, **kwargs): self.output_dim = output_dim super(Self_Attention, self).init(**kwargs) def build(self, input_shape): # 为该层创建一个可训练的权重 # inputs.shape = (batch_size, time_steps, seq_len) # 可能seq_len是64,output_dim是128 self.kernel = self.add_weight(name='kernel', shape=(3, input_shape[2], self.output_dim), initializer='uniform', trainable=True) super(Self_Attention, self).build(input_shape) # 一定要在最后调用它 def call(self, x): WQ = K.dot(x, self.kernel[0]) WK = K.dot(x, self.kernel[1]) WV = K.dot(x, self.kernel[2]) print("WQ.shape", WQ.shape) # print("WQ_.shape", WQ_.shape) print("K.permute_dimensions(WK, [0, 2, 1]).shape", K.permute_dimensions(WK, [0, 2, 1]).shape) QK = K.batch_dot(WQ, K.permute_dimensions(WK, [0, 2, 1])) QK = QK / (64 ** 0.5) QK = K.softmax(QK) print("QK.shape", QK.shape) # distribution函数: (QxKt)/dk V = K.batch_dot(QK, WV) return V def compute_output_shape(self, input_shape): return (input_shape[0], input_shape[1], self.output_dim) 解释这段代码,举例怎样使用

这段代码实现了一个自注意力层(Self-Attention Layer),用于文本分类等任务中。下面是对代码的解释: ```python from keras import backend as K from keras.engine.topology import Layer class Self_Attention(Layer): def __init__(self, output_dim, **kwargs): self.output_dim = output_dim super(Self_Attention, self).__init__(**kwargs) def build(self, input_shape): # 为该层创建一个可训练的权重 # inputs.shape = (batch_size, time_steps, seq_len) # 可能seq_len是64,output_dim是128 self.kernel = self.add_weight(name='kernel', shape=(3, input_shape[2], self.output_dim), initializer='uniform', trainable=True) super(Self_Attention, self).build(input_shape) # 一定要在最后调用它 def call(self, x): WQ = K.dot(x, self.kernel[0]) WK = K.dot(x, self.kernel[1]) WV = K.dot(x, self.kernel[2]) print("WQ.shape", WQ.shape) print("K.permute_dimensions(WK, [0, 2, 1]).shape", K.permute_dimensions(WK, [0, 2, 1]).shape) QK = K.batch_dot(WQ, K.permute_dimensions(WK, [0, 2, 1])) QK = QK / (64 ** 0.5) QK = K.softmax(QK) print("QK.shape", QK.shape) V = K.batch_dot(QK, WV) return V def compute_output_shape(self, input_shape): return (input_shape[0], input_shape[1], self.output_dim) ``` 这个自注意力层的输入是一个形状为`(batch_size, time_steps, seq_len)`的张量,其中`seq_len`表示序列的长度,例如一个句子中的单词数。输出是形状为`(batch_size, time_steps, output_dim)`的张量,其中`output_dim`表示自注意力层的输出维度,例如一个句子中的每个单词都会被映射成一个长度为128的向量。 在`__init__`方法中,我们定义了输出维度`output_dim`,并调用了父类的`__init__`方法。 在`build`方法中,我们定义了一个可训练的权重`kernel`,它是一个形状为`(3, seq_len, output_dim)`的张量,其中`3`表示了我们需要计算出`Q`、`K`、`V`三个向量,`seq_len`为输入序列的长度,`output_dim`为自注意力层的输出维度。我们使用了`add_weight`方法来创建这个权重,并指定了它的名称、形状和初始化方法,将它设置为可训练的。最后,我们调用了父类的`build`方法。 在`call`方法中,我们首先根据`kernel`权重计算出`Q`、`K`、`V`三个向量,分别对输入`x`进行线性变换得到。然后,我们通过`batch_dot`方法计算出`Q`和`K`之间的点积,并使用`softmax`函数将其归一化,得到注意力分布`QK`。最后,我们将注意力分布`QK`和`V`进行加权求和,得到自注意力层的输出`V`。 在`compute_output_shape`方法中,我们返回了自注意力层的输出形状`(batch_size, time_steps, output_dim)`。 使用这个自注意力层的方法如下: ```python from keras.layers import Input, Dense, Masking, LSTM, Bidirectional from keras.models import Model import numpy as np # 定义输入数据形状和类别数 max_len = 64 num_classes = 5 # 构建模型 inputs = Input(shape=(max_len,)) x = Masking(mask_value=0)(inputs) # 对输入进行 Masking,将填充部分忽略 x = Bidirectional(LSTM(64, return_sequences=True))(x) # 双向 LSTM x = Self_Attention(output_dim=128)(x) # 自注意力层 x = Dense(64, activation='relu')(x) outputs = Dense(num_classes, activation='softmax')(x) model = Model(inputs=inputs, outputs=outputs) # 编译模型并训练 model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) x_train = np.random.randint(5, size=(64, 64)) # 随机生成训练数据 y_train = np.random.randint(num_classes, size=(64,)) # 随机生成训练标签 y_train = np.eye(num_classes)[y_train] # 将标签转换为 one-hot 编码 model.fit(x_train, y_train, epochs=10, batch_size=8) ``` 在这个示例中,我们首先定义了输入数据的形状和类别数,然后构建了一个包含自注意力层的模型。这个模型首先对输入进行 Masking,然后使用双向 LSTM 进行编码,接着使用自注意力层进行加权求和,最后通过全连接层进行分类。我们使用了随机生成的数据进行训练。需要注意的是,在实际使用中,我们还需要根据具体的任务场景和数据情况进行模型的调参和优化。

相关推荐

最新推荐

recommend-type

java毕设&课设-ASP校友录设计(源代码+论文).zip

计算机毕业设计资源包含(项目部署视频+源码+LW+开题报告等等),所有项目经过助教老师跑通,有问题可以私信博主解决,可以免费帮部署。
recommend-type

ASP网上书店售书系统设计(源代码+论文).rar

ASP网上书店售书系统设计(源代码+论文)
recommend-type

ASP+SQL客户关系管理系统设计(源代码+论文).rar

ASP+SQL客户关系管理系统设计(源代码+论文)
recommend-type

java毕设&课设-ASP图书管理系统的设计与实现(源代码+论文).zip

计算机毕业设计资源包含(项目部署视频+源码+LW+开题报告等等),所有项目经过助教老师跑通,有问题可以私信博主解决,可以免费帮部署。
recommend-type

mysql-基于决策树算法的大学生就业预测系统(源码+论文+数据库).rar

自计算机诞生以后,计算机技术发生了翻天覆地的变化。在短短几十年来,科学技术迅猛发展,进入21世纪宽带网络才刚刚在地球上兴起,短短十几年来,计算机网络技术遍及世界各地,现代科学技术的发展使计算机网络技术对我们的世界上发生了天翻地覆的变化。计算机技术的进步深深的影响着人们的日常生活和工作学习,与科技发生着千丝万缕的联系。 计算机的应用变得十分广泛,同时也应用在招聘就业方面。高校就业预测系统就是一种基于互联网技术诞生的新型招聘就业服务系统。高校就业预测系统设计符合操作简便、界面友好、灵活、实用、安全的要求,完成信息传递的全过程,本系统采用的工具是my eclipse,采用JSP进行开发,采用的数据库mysql数据库。系统安全性问题:通过用户密码、手机注册验证码双重保护。技术路线及关键:根据功能需求JSP在my eclipse环境下开发高校就业预测系统网站;有时也可为了需求方便使用myeclipse开发桌面管理软件简化网站的管理操作。 关键词 就业预测系统 网站 JSP
recommend-type

Node.js实战:快速入门,全面解析

"Node.js即学即用是一本面向JavaScript和编程有一定基础的读者的入门书籍,旨在教授如何利用Node.js构建可扩展的互联网应用程序。本书详尽介绍了Node.js提供的API,同时深入探讨了服务器端事件驱动开发的关键概念,如并发连接处理、非阻塞I/O以及事件驱动编程。内容覆盖了对多种数据库和数据存储工具的支持,提供了Node.js API的实际使用示例。" 在Node.js的世界里,事件驱动模型是其核心特性之一。这种模型使得Node.js能够高效地处理大量并发连接,通过非阻塞I/O操作来提高性能。在本书中,读者将学习如何利用Node.js的异步编程能力来创建高性能的网络应用,这是Node.js在处理高并发场景时的一大优势。 Node.js的API涵盖了网络通信、文件系统操作、流处理等多个方面。例如,`http`模块用于创建HTTP服务器,`fs`模块提供了对文件系统的读写功能,而`stream`模块则支持数据的高效传输。书中会通过实例来展示如何使用这些API,帮助读者快速上手。 对于数据库和数据存储,Node.js有丰富的库支持,如MongoDB的`mongodb`模块、MySQL的`mysql`模块等。书中会讲解如何在Node.js应用中集成这些数据库,进行数据的增删改查操作,以及如何优化数据访问性能。 此外,本书还会介绍Node.js中的模块系统,包括内置模块和第三方模块的安装与使用,如使用`npm`(Node Package Manager)管理依赖。这使得开发者可以轻松地复用社区中的各种工具和库,加速开发进程。 《Node.js即学即用》是一本全面的实战指南,不仅适合初学者快速掌握Node.js的基础知识,也适合有一定经验的开发者深入理解Node.js的高级特性和最佳实践。通过阅读本书,读者不仅可以学习到Node.js的技术细节,还能了解到如何构建实际的、可扩展的网络应用。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

nginx配置中access_log指令的深入分析:日志记录和分析网站流量,提升网站运营效率

![nginx配置中access_log指令的深入分析:日志记录和分析网站流量,提升网站运营效率](https://img-blog.csdnimg.cn/img_convert/36fecb92e4eec12c90a33e453a31ac1c.png) # 1. nginx access_log指令概述** nginx 的 `access_log` 指令用于记录服务器处理客户端请求的信息。它可以生成日志文件,其中包含有关请求的详细信息,例如请求方法、请求 URI、响应状态代码和请求时间。这些日志对于分析网站流量、故障排除和性能优化至关重要。 `access_log` 指令的基本语法如下:
recommend-type

opencvsharp连接工业相机

OpenCVSharp是一个.NET版本的OpenCV库,它提供了一种方便的方式来在C#和Mono项目中使用OpenCV的功能。如果你想要连接工业相机并使用OpenCVSharp处理图像数据,可以按照以下步骤操作: 1. 安装OpenCVSharp:首先,你需要从GitHub或NuGet包管理器下载OpenCVSharp库,并将其添加到你的项目引用中。 2. 配置硬件支持:确保你的工业相机已安装了适当的驱动程序,并且与计算机有物理连接或通过网络相连。对于一些常见的工业相机接口,如USB、GigE Vision或V4L2,OpenCV通常能够识别它们。 3. 初始化设备:使用OpenCVS
recommend-type

张智教授详解Java入门资源:J2SE与J2ME/J2EE应用

本PPT教程由主讲教师张智精心制作,专为Java初学者设计,旨在快速提升学习者的Java编程入门能力,以应对各类考试需求。教程内容涵盖了Java的基础知识和实用技巧,从语言的历史背景和发展到核心特性。 1. **Java简介**: - Java起源于1990年由James Gosling领导的小组,原名Oak,目标是为家用电器编程,后来在1995年更名为Java。Java是一种平台无关、面向对象的语言,其特点包括:平台无关性,通过JVM实现跨平台;面向对象,强调代码重用;简单健壮,降低出错风险;解释性,源代码编译成字节码执行;分布式,支持网络通信;安全,防止非法操作;多线程,支持并发处理;动态性和可升级性;以及高性能。 2. **Java平台版本**: - Java有三个主要版本: - 微型版(J2ME):针对移动设备和嵌入式设备,如手机或IoT设备。 - 标准版(J2SE,Java SE):适用于桌面和服务器开发,涵盖了日常应用开发。 - 企业版(J2EE,Java EE):为企业级应用和Web应用设计,如企业级服务器和Web服务。 3. **Java环境配置**: - 要开始Java编程,首先需要下载Java JDK,如Java 8。然后配置Java环境变量,例如设置JAVA_HOME指向JDK安装路径,CLASSPATH用于指定类库搜索路径,以及添加JDK bin和jre bin到PATH中,以便执行Java命令。 4. **常用IDE工具**: - Eclipse是一款推荐使用的Java IDE,它提供了集成开发环境,便于代码编写、调试和测试。下载Eclipse后,通常直接解压安装即可。 整个教程围绕Java的核心概念展开,从基础语法讲解到实践项目,适合初学者系统地学习和巩固Java知识,无论是为了学术研究还是职业发展,都能提供有效的学习资源。通过本资源,初学者能够快速掌握Java编程,并为进一步深入学习和实战项目打下坚实基础。