全连接神经网络举例,包括定义网络,训练网络,完整Python代码,Pytorch平台,
时间: 2024-03-30 21:14:40 浏览: 71
好的,我可以回答你的问题。以下是关于全连接神经网络的定义、训练和Python代码:
全连接神经网络是一种基本的神经网络类型,其中每个神经元都与之前和之后的每个神经元都有连接。
定义网络:
```python
import torch.nn as nn
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.fc1 = nn.Linear(784, 512)
self.fc2 = nn.Linear(512, 256)
self.fc3 = nn.Linear(256, 10)
self.relu = nn.ReLU()
self.softmax = nn.Softmax(dim=1)
def forward(self, x):
x = x.view(-1, 784)
x = self.relu(self.fc1(x))
x = self.relu(self.fc2(x))
x = self.softmax(self.fc3(x))
return x
net = Net()
```
这个网络有3个全连接的层和2个非线性的激活函数,也使用了 softmax ,最终输出一个10维的分类标签。这里的输入是一张手写数字图片,输出是一个 10 维的向量,其中每个元素代表了这张图片被分类到每个数字中的概率。
训练网络:
```python
import torchvision.datasets as datasets
import torchvision.transforms as transforms
import torch.optim as optim
train_dataset = datasets.MNIST(root='./data',
train=True,
transform=transforms.ToTensor(),
download=True)
test_dataset = datasets.MNIST(root='./data',
train=False,
transform=transforms.ToTensor(),
download=True)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=100,
shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
batch_size=100,
shuffle=False)
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.01, momentum=0.9)
for epoch in range(10):
running_loss = 0.0
for i, data in enumerate(train_loader, 0):
inputs, labels = data
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if i % 100 == 99:
print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 100))
running_loss = 0.0
print('Finished Training')
```
在这里,我们使用了 MNIST 数据集进行训练,定义了损失函数和优化器。这里的优化器是随机梯度下降(SGD),指定一个学习率和动量,训练周期为 10 个 epoch。
完整Python代码:
```python
import torch.nn as nn
import torchvision.datasets as datasets
import torchvision.transforms as transforms
import torch.optim as optim
import torch
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.fc1 = nn.Linear(784, 512)
self.fc2 = nn.Linear(512, 256)
self.fc3 = nn.Linear(256, 10)
self.relu = nn.ReLU()
self.softmax = nn.Softmax(dim=1)
def forward(self, x):
x = x.view(-1, 784)
x = self.relu(self.fc1(x))
x = self.relu(self.fc2(x))
x = self.softmax(self.fc3(x))
return x
net = Net()
train_dataset = datasets.MNIST(root='./data',
train=True,
transform=transforms.ToTensor(),
download=True)
test_dataset = datasets.MNIST(root='./data',
train=False,
transform=transforms.ToTensor(),
download=True)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=100,
shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
batch_size=100,
shuffle=False)
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.01, momentum=0.9)
for epoch in range(10):
running_loss = 0.0
for i, data in enumerate(train_loader, 0):
inputs, labels = data
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if i % 100 == 99:
print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 100))
running_loss = 0.0
print('Finished Training')
```
这是一个完整的 MNIST 数据集的全连接神经网络实现,使用 PyTorch 平台。
阅读全文