plt.figure(figsize= (10, 4)) plt.subplot(121) plt.plot(range(n_epoch), cbow_losses, 'r-o', label = 'CBOW Losses') plt.legend() plt.subplot(122) plt.plot(range(n_epoch), sg_losses, 'g-s', label = 'SkipGram Losses') plt.legend() plt.tight_layout()这段代码什么意思
时间: 2024-01-19 19:03:53 浏览: 152
解决python中显示图片的plt.imshow plt.show()内存泄漏问题
这段代码的作用是绘制模型训练过程中的损失值曲线图,其中:
- `plt.figure(figsize= (10, 4))`:创建一个大小为(10, 4)的Matplotlib图形对象。
- `plt.subplot(121)`:创建一个大小为1x2的子图,并将当前子图设置为第1个子图。
- `plt.plot(range(n_epoch), cbow_losses, 'r-o', label = 'CBOW Losses')`:在当前子图中绘制CBOW算法的损失值曲线,并用红色圆点表示。其中`range(n_epoch)`表示x轴范围为0到n_epoch-1,`cbow_losses`表示y轴上的损失值。
- `plt.legend()`:添加图例到当前子图中。
- `plt.subplot(122)`:将当前子图设置为第2个子图。
- `plt.plot(range(n_epoch), sg_losses, 'g-s', label = 'SkipGram Losses')`:在当前子图中绘制Skip-gram算法的损失值曲线,并用绿色正方形表示。其中`range(n_epoch)`表示x轴范围为0到n_epoch-1,`sg_losses`表示y轴上的损失值。
- `plt.legend()`:添加图例到当前子图中。
- `plt.tight_layout()`:调整子图布局,使其紧凑显示。
绘制损失值曲线图可以帮助我们了解模型训练过程中的性能表现,以及在何时停止训练模型。
阅读全文