某工厂为七天24小时生产,需要工人值班,分为早、中、晚三班倒,目前有12名员工轮换值班,编号为1、2、、N要求: 1)每人每天只能值一个班,无论何时都不能连续值两个班; 2)每人一周至少休息2天(一天时间 00:00 – 24:00); 3)每天每个班次满足所需人数,见表1所示. 问题: 在保证正常工厂生产的前提下,至多需要裁掉多少员工,并给出未来一周的排班表,即每人在哪一天的什么时间段值班?使用Java代码来解决这个整数规划问题,把代码写出来
时间: 2023-07-14 07:14:23 浏览: 206
UniMAT产品在某工厂车间生产用水系统中的应用
这个问题可以建模为整数规划问题。我们可以使用0/1变量$x_{i,j,k}$表示员工$i$在第$j$天的第$k$个班次是否值班,即:
$$
x_{i,j,k} = \begin{cases}
1 & \text{员工$i$在第$j$天的第$k$个班次值班}\\
0 & \text{否则}
\end{cases}
$$
同时,我们需要使用另外一个0/1变量$y_i$表示员工$i$是否被裁掉,即:
$$
y_i = \begin{cases}
1 & \text{员工$i$被裁掉}\\
0 & \text{否则}
\end{cases}
$$
那么我们需要最小化被裁掉的员工数,即:
$$
\text{minimize} \sum_{i=1}^N y_i
$$
同时,需要满足以下约束条件:
1. 每人每天只能值一个班:
$$
\sum_{k=1}^3 x_{i,j,k} = 1, \ \forall i,j
$$
2. 无论何时都不能连续值两个班:
$$
x_{i,j,3} + x_{i,j+1,1} \leq 1, \ \forall i,j \leq 6
$$
3. 每人一周至少休息2天:
$$
\sum_{j=1}^7 \sum_{k=1}^3 x_{i,j,k} \leq 5, \ \forall i
$$
4. 每天每个班次满足所需人数:
$$
\sum_{i=1}^N x_{i,j,k} = p_{j,k}, \ \forall j,k
$$
5. $y_i$为0/1变量:
$$
y_i \in \{0,1\}, \ \forall i
$$
因为这是一个整数规划问题,我们可以使用Java中的整数规划库来求解。以下是Java代码实现:
```java
import org.apache.commons.math3.optim.linear.*;
import org.apache.commons.math3.optim.*;
import org.apache.commons.math3.linear.*;
public class ShiftScheduling {
public static void main(String[] args) {
// 班次人数需求
int[][] p = {{2, 3, 2}, {2, 3, 2}, {2, 2, 3}, {2, 2, 3}, {3, 2, 2}, {3, 2, 2}, {3, 3, 2}};
int n = 12; // 员工数量
int d = 7; // 天数
int t = 3; // 班次数量
// 创建线性规划问题
LinearObjectiveFunction obj = new LinearObjectiveFunction(new double[n], 0);
ArrayList<LinearConstraint> constraints = new ArrayList<>();
// 添加约束条件
for (int i = 0; i < n; i++) {
for (int j = 0; j < d; j++) {
constraints.add(new LinearConstraint(createOneHotVector(i, j, t), Relationship.EQ, 1));
}
constraints.add(new LinearConstraint(createZeroOneVector(i, d * t), Relationship.LEQ, 5));
}
for (int j = 0; j < d; j++) {
for (int k = 0; k < t; k++) {
constraints.add(new LinearConstraint(createCountVector(j, k, n), Relationship.EQ, p[j][k]));
}
}
for (int i = 0; i < n; i++) {
for (int j = 0; j < d - 1; j++) {
constraints.add(new LinearConstraint(createTwoConsecutiveVector(i, j, t), Relationship.LEQ, 1));
}
}
// 添加0/1变量
for (int i = 0; i < n; i++) {
obj.setCoefficient(i, 1);
constraints.add(new LinearConstraint(createZeroOneVector(i, d * t), Relationship.EQ, 1));
}
// 创建整数规划问题
LinearConstraintSet constraintSet = new LinearConstraintSet(constraints);
IntegerVariable[] vars = new IntegerVariable[n];
for (int i = 0; i < n; i++) {
vars[i] = new IntegerVariable(0, 1);
}
IntegerLinearObjectiveFunction integerObj = new IntegerLinearObjectiveFunction(obj.getCoefficients().toArray(), 0, obj.getGoalType());
IntegerLinearConstraintSet integerConstraints = constraintSet.toIntegerLinearConstraintSet(Precision.EPSILON, vars);
// 求解整数规划问题
IntegerSolver solver = new BranchAndBoundSolver();
PointValuePair solution = solver.solve(integerObj, integerConstraints);
// 输出结果
int[][][] x = new int[n][d][t];
for (int i = 0; i < n; i++) {
for (int j = 0; j < d; j++) {
for (int k = 0; k < t; k++) {
x[i][j][k] = (int) solution.getPoint()[i * d * t + j * t + k];
}
}
}
int numFired = 0;
for (int i = 0; i < n; i++) {
if (solution.getPoint()[i] == 1) {
numFired++;
}
}
System.out.println("最少裁掉" + numFired + "个员工。");
System.out.println("排班表:");
for (int j = 0; j < d; j++) {
System.out.println("第" + (j + 1) + "天:");
for (int k = 0; k < t; k++) {
System.out.print("第" + (k + 1) + "个班次:");
for (int i = 0; i < n; i++) {
if (x[i][j][k] == 1) {
System.out.print("员工" + (i + 1) + " ");
}
}
System.out.println();
}
}
}
// 创建一个01向量,表示员工i在第j天的第k个班次是否值班
private static double[] createOneHotVector(int i, int j, int t) {
double[] vec = new double[t * 7];
int idx = i * t * 7 + j * t;
for (int k = 0; k < t; k++) {
vec[idx + k] = 1;
}
return vec;
}
// 创建一个01向量,表示员工i的排班情况
private static double[] createZeroOneVector(int i, int N) {
double[] vec = new double[N];
for (int j = 0; j < N; j++) {
vec[j] = (j / 3 == i) ? 1 : 0;
}
return vec;
}
// 创建一个向量,表示第j天第k个班次需要的员工数量
private static double[] createCountVector(int j, int k, int N) {
double[] vec = new double[N * 3];
int idx = j * 3 + k;
for (int i = 0; i < N; i++) {
vec[i * 3 + k] = 1;
}
return vec;
}
// 创建一个01向量,表示员工i在第j天和第j+1天是否连续工作
private static double[] createTwoConsecutiveVector(int i, int j, int t) {
double[] vec = new double[t * 7];
if (j < 6) {
int idx1 = i * t * 7 + j * t + 2;
int idx2 = i * t * 7 + (j + 1) * t;
vec[idx1] = 1;
vec[idx2] = 1;
}
return vec;
}
}
```
阅读全文