The intensity in CT images is associated to tissue density and it is measured with the Hounsfield scale (HS). Specific HS value ranges are defined for each type of tissue, which allows the direct comparison of images from different vendors. However, artifacts or acquisition errors might affect the image and give pixel values outside the physiological range. We filter these artifacts by thresholding the pixel values of CT images between HS=−1050 (air density score) and HS=3050 (bone density score). Similarly, the SUVs in PET images are thresholded in the range between 0 and 50 to avoid artifacts due to errors in sensors readings. 解释
时间: 2024-02-14 19:36:17 浏览: 159
这段话主要讲了CT和PET图像中像素值的测量和过滤。在CT图像中,像素值与组织密度相关,使用的是Hounsfield刻度(HS),每种类型的组织都有特定的HS值范围。但是,可能会出现伪影或采集误差,导致像素值超出生理范围。为了过滤这些伪影,需要将CT图像的像素值限定在HS=-1050(空气密度)和HS=3050(骨密度)之间。同样地,在PET图像中,SUV值也需要进行限制,通常在0到50之间,以避免由于传感器读数误差导致的伪影。
相关问题
Implement a function with Matlab that equalizes grey-scale images based on their histogram. The input is a given grey level image; the output is the derived image with uniform intensity distribution.
Sure, here's an implementation of the function in MATLAB:
```matlab
function equalized_img = hist_equalization(img)
% Calculate histogram
[hist, bins] = imhist(img);
% Calculate cumulative distribution function (CDF)
cdf = cumsum(hist);
% Normalize CDF
cdf_normalized = cdf * max(hist) / max(cdf);
% Create lookup table
lut = interp1(bins, cdf_normalized, 0:255);
% Apply lookup table to image
equalized_img = uint8(lut(double(img)+1));
end
```
To use this function, simply pass in a grayscale image as the argument and it will return the equalized image. Here's an example of how to use it:
```matlab
% Load grayscale image
img = imread('image.jpg');
img_gray = rgb2gray(img);
% Apply histogram equalization
equalized_img = hist_equalization(img_gray);
% Display original and equalized images
subplot(1,2,1), imshow(img_gray), title('Original Image')
subplot(1,2,2), imshow(equalized_img), title('Equalized Image')
```
I hope this helps! Let me know if you have any questions.
def __init__(self, indir=None): """ Initialize the instance. @indir (string) The directry path containing CT iamages. """ self.stack = None self.mask = None self.shape = None self.outdir = None self.peak_air = None self.peak_soil = None self.diff = None if indir is not None: self.loadStack(indir) else: self.indir = None def loadStack(self, indir): """ Load the CT images. @indir (string) The directry path containing the CT iamages. """ self.indir = indir files = glob.glob(os.path.join(self.indir, '*.*')) files = [f for f in files if f.endswith('.cb')] #// '.cb' is the extension of the CT iamges generated with Shimazdu X-ray CT system if len(files) == 0: raise Exception('Stack loading failed.') files.sort() print('Stack loading: {}'.format(self.indir)) self.stack = [io.imread(f) for f in tqdm.tqdm(files)] self.stack = np.asarray(self.stack, dtype=np.uint16) #// '.cb' files is the 16-bit grayscale images self.shape = self.stack.shape return def checkStack(self): """ Check whether the CT images was loaded. """ if self.stack is None: raise Exception('The CT images not loaded.') def checkMask(self): """ Check whether the CT mask was computed. """ if self.mask is None: raise Exception('The mask not computed.') def saveStack(self, outdir): """ Save the processed images. @outdir (string) The directry path where self.stack will be saved. """ self.checkStack() self.outdir = outdir if not os.path.isdir(self.outdir): os.makedirs(self.outdir) print('Stack saving: {}'.format(self.outdir)) for i, img in enumerate(tqdm.tqdm(self.stack)): img = exposure.rescale_intensity(img, in_range=(0,255), out_range=(0,255)).astype(np.uint8) out = os.path.join(self.outdir, 'img%s.png' % str(i).zfill(4)) io.imsave(out, img) return对于每一行代码,请详细解释一下
该代码是一个Python类的初始化函数及其中一个方法。当创建该类的实例时(使用类名加括号),该初始化函数将被调用,并在其中设置类的一些属性。indir是初始化函数的参数,如果传入,则会调用loadStack方法来读取中心切片CT图像的文件路径。loadStack方法同样需要传入一个indir参数,并使用glob模块获取路径下所有后缀为.cb的文件。
阅读全文