The intensity in CT images is associated to tissue density and it is measured with the Hounsfield scale (HS). Specific HS value ranges are defined for each type of tissue, which allows the direct comparison of images from different vendors. However, artifacts or acquisition errors might affect the image and give pixel values outside the physiological range. We filter these artifacts by thresholding the pixel values of CT images between HS=−1050 (air density score) and HS=3050 (bone density score). Similarly, the SUVs in PET images are thresholded in the range between 0 and 50 to avoid artifacts due to errors in sensors readings. 解释

时间: 2024-02-14 10:36:17 浏览: 51
这段话主要讲了CT和PET图像中像素值的测量和过滤。在CT图像中,像素值与组织密度相关,使用的是Hounsfield刻度(HS),每种类型的组织都有特定的HS值范围。但是,可能会出现伪影或采集误差,导致像素值超出生理范围。为了过滤这些伪影,需要将CT图像的像素值限定在HS=-1050(空气密度)和HS=3050(骨密度)之间。同样地,在PET图像中,SUV值也需要进行限制,通常在0到50之间,以避免由于传感器读数误差导致的伪影。
相关问题

Implement a function that equalizes grey-scale images based on their histogram. The input is a given grey level image; the output is the derived image with uniform intensity distribution.

Sure, I can help you with that! Here is a Python implementation of the function: ```python import numpy as np import cv2 def hist_equalization(img): # Calculate histogram hist, bins = np.histogram(img.flatten(), 256, [0, 256]) # Calculate cumulative distribution function (CDF) cdf = hist.cumsum() # Normalize CDF cdf_normalized = cdf * hist.max() / cdf.max() # Create lookup table lut = np.interp(np.arange(256), bins[:-1], cdf_normalized) # Apply lookup table to image equalized_img = cv2.LUT(img, lut) return equalized_img ``` To use this function, simply pass in a grayscale image as the argument and it will return the equalized image. Here's an example of how to use it: ```python # Load grayscale image img = cv2.imread('image.jpg', 0) # Apply histogram equalization equalized_img = hist_equalization(img) # Display original and equalized images cv2.imshow('Original Image', img) cv2.imshow('Equalized Image', equalized_img) cv2.waitKey(0) cv2.destroyAllWindows() ``` I hope this helps! Let me know if you have any questions.

Implement a function with Matlab that equalizes grey-scale images based on their histogram. The input is a given grey level image; the output is the derived image with uniform intensity distribution.

Sure, here's an implementation of the function in MATLAB: ```matlab function equalized_img = hist_equalization(img) % Calculate histogram [hist, bins] = imhist(img); % Calculate cumulative distribution function (CDF) cdf = cumsum(hist); % Normalize CDF cdf_normalized = cdf * max(hist) / max(cdf); % Create lookup table lut = interp1(bins, cdf_normalized, 0:255); % Apply lookup table to image equalized_img = uint8(lut(double(img)+1)); end ``` To use this function, simply pass in a grayscale image as the argument and it will return the equalized image. Here's an example of how to use it: ```matlab % Load grayscale image img = imread('image.jpg'); img_gray = rgb2gray(img); % Apply histogram equalization equalized_img = hist_equalization(img_gray); % Display original and equalized images subplot(1,2,1), imshow(img_gray), title('Original Image') subplot(1,2,2), imshow(equalized_img), title('Equalized Image') ``` I hope this helps! Let me know if you have any questions.

相关推荐

def __init__(self, indir=None): """ Initialize the instance. @indir (string) The directry path containing CT iamages. """ self.stack = None self.mask = None self.shape = None self.outdir = None self.peak_air = None self.peak_soil = None self.diff = None if indir is not None: self.loadStack(indir) else: self.indir = None def loadStack(self, indir): """ Load the CT images. @indir (string) The directry path containing the CT iamages. """ self.indir = indir files = glob.glob(os.path.join(self.indir, '*.*')) files = [f for f in files if f.endswith('.cb')] #// '.cb' is the extension of the CT iamges generated with Shimazdu X-ray CT system if len(files) == 0: raise Exception('Stack loading failed.') files.sort() print('Stack loading: {}'.format(self.indir)) self.stack = [io.imread(f) for f in tqdm.tqdm(files)] self.stack = np.asarray(self.stack, dtype=np.uint16) #// '.cb' files is the 16-bit grayscale images self.shape = self.stack.shape return def checkStack(self): """ Check whether the CT images was loaded. """ if self.stack is None: raise Exception('The CT images not loaded.') def checkMask(self): """ Check whether the CT mask was computed. """ if self.mask is None: raise Exception('The mask not computed.') def saveStack(self, outdir): """ Save the processed images. @outdir (string) The directry path where self.stack will be saved. """ self.checkStack() self.outdir = outdir if not os.path.isdir(self.outdir): os.makedirs(self.outdir) print('Stack saving: {}'.format(self.outdir)) for i, img in enumerate(tqdm.tqdm(self.stack)): img = exposure.rescale_intensity(img, in_range=(0,255), out_range=(0,255)).astype(np.uint8) out = os.path.join(self.outdir, 'img%s.png' % str(i).zfill(4)) io.imsave(out, img) return请完整详细的解释每一行代码意思

最新推荐

recommend-type

OpenCV+Python–RGB转HSI的实现

HIS模型是从人的视觉系统出发,直接使用颜色三要素–色调(Hue)、饱和度(Saturation)和亮度(Intensity,有时也翻译作密度或灰度)来描述颜色。 RGB向HSI模型的转换是由一个基于笛卡尔直角坐标系的单位立方体向...
recommend-type

光传感器(Light)距离传感器(Proximity )原理

光传感器(Light)距离...光度学物理量——发光强度(I/Intensity);光度学物理量——光通量(F/Flux);光度学物理量——照度(E/Illuminance);光度学物理量——亮度(L/Luminance); Light Sensor—分类与特性;
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】MATLAB用遗传算法改进粒子群GA-PSO算法

![MATLAB智能算法合集](https://static.fuxi.netease.com/fuxi-official/web/20221101/83f465753fd49c41536a5640367d4340.jpg) # 2.1 遗传算法的原理和实现 遗传算法(GA)是一种受生物进化过程启发的优化算法。它通过模拟自然选择和遗传机制来搜索最优解。 **2.1.1 遗传算法的编码和解码** 编码是将问题空间中的解表示为二进制字符串或其他数据结构的过程。解码是将编码的解转换为问题空间中的实际解的过程。常见的编码方法包括二进制编码、实数编码和树形编码。 **2.1.2 遗传算法的交叉和
recommend-type

openstack的20种接口有哪些

以下是OpenStack的20种API接口: 1. Identity (Keystone) API 2. Compute (Nova) API 3. Networking (Neutron) API 4. Block Storage (Cinder) API 5. Object Storage (Swift) API 6. Image (Glance) API 7. Telemetry (Ceilometer) API 8. Orchestration (Heat) API 9. Database (Trove) API 10. Bare Metal (Ironic) API 11. DNS
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【实战演练】时间序列预测用于个体家庭功率预测_ARIMA, xgboost, RNN

![【实战演练】时间序列预测用于个体家庭功率预测_ARIMA, xgboost, RNN](https://img-blog.csdnimg.cn/img_convert/5587b4ec6abfc40c76db14fbef6280db.jpeg) # 1. 时间序列预测简介** 时间序列预测是一种预测未来值的技术,其基于历史数据中的时间依赖关系。它广泛应用于各种领域,例如经济、金融、能源和医疗保健。时间序列预测模型旨在捕捉数据中的模式和趋势,并使用这些信息来预测未来的值。 # 2. 时间序列预测方法 时间序列预测方法是利用历史数据来预测未来趋势或值的统计技术。在时间序列预测中,有许多不
recommend-type

怎么在集群安装安装hbase

您好,关于如何在集群上安装HBase,步骤大致如下: 1. 在HBase官网上下载最新版本的HBase,并解压到需要安装的目录下; 2. 配置HBase的环境变量:将HBase目录的bin子目录加入到PATH环境变量中; 3. 修改HBase配置文件:在HBase目录下的conf子目录中找到hbase-site.xml文件,并进行相应的配置,如指定HBase的Zookeeper节点等; 4. 启动HBase:使用HBase的bin目录下的start-hbase.sh脚本启动HBase; 5. 验证HBase是否正常运行:使用HBase自带的shell命令行工具操作HBase。 注意:以上步