self.toTensor(img).unsqueeze(0).float().to(self.device)
时间: 2024-02-01 20:03:55 浏览: 222
这行代码是将一个图片数据转换成PyTorch张量,并且增加一个维度作为batch size,最后将张量移动到指定的设备上,通常是GPU。具体来说:
- self.toTensor(img) 将图片数据转换成PyTorch张量
- unsqueeze(0) 在第0维增加一个维度,作为batch size
- float() 将张量数据类型转换为浮点型
- to(self.device) 将张量移动到指定设备上,一般是GPU。
相关问题
img_path, lab_path = self.label_list[index] img, lab = self.transform(img_path, lab_path, self.augment) img = torch.tensor(np.array(img)).permute(2, 0, 1).unsqueeze(0).float()/255.0 lab = torch.tensor(np.array(lab)).permute(2, 0, 1).unsqueeze(0).float()/255.0 return img, lab
根据你提供的代码,`img` 和 `lab` 的维度都应该是四维的,而且顺序应该是 `(channels, height, width, batch_size)`。如果你遇到了上面提到的维度错误,可以检查你的数据和 transform 函数的实现。另外,注意 PyTorch 的张量默认是在 CPU 上,如果你需要在 GPU 上运行模型,需要将其显式地移动到 GPU 上。你可以在 `return` 语句之前加入以下代码将其移动到 GPU 上:
```python
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
img, lab = img.to(device), lab.to(device)
```
这会自动检测你的计算机是否有可用的 GPU,如果有,就将数据移动到 GPU 上,否则就在 CPU 上运行。
def detect(self, name_list, img): showimg = img with torch.no_grad(): img = letterbox(img, new_shape=self.opt.img_size)[0] img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416 img = np.ascontiguousarray(img) img = torch.from_numpy(img).to(self.device) img = img.half() if self.half else img.float() # uint8 to fp16/32 img /= 255.0 # 0 - 255 to 0.0 - 1.0 if img.ndimension() == 3: img = img.unsqueeze(0) pred = self.model(img, augment=self.opt.augment)[0] pred = non_max_suppression(pred, self.opt.conf_thres, self.opt.iou_thres, classes=self.opt.classes, agnostic=self.opt.agnostic_nms) info_show = "" for i, det in enumerate(pred): if det is not None and len(det): det[:, :4] = scale_coords(img.shape[2:], det[:, :4], showimg.shape).round() for *xyxy, conf, cls in reversed(det): label = '%s %.2f' % (self.names[int(cls)], conf) name_list.append(self.names[int(cls)]) single_info = plot_one_box2(xyxy, showimg, label=label, color=self.colors[int(cls)], line_thickness=2) # print(single_info) info_show = info_show + single_info + "\n" return info_show解释代码
这个代码是对输入的图片进行目标检测的,其中包含以下步骤:
1. 将输入的图片进行缩放,使其宽度和高度都等于opt.img_size(一般情况下为416),并将其转换为RGB格式。
2. 将缩放后的图片转换为PyTorch的tensor,并将其从uint8类型转换为fp16或fp32类型,同时将像素值从0-255的范围转换为0.0-1.0的范围。
3. 将tensor的维度变为4维,即增加一个batch维度。
4. 通过调用self.model对图片进行预测,得到预测结果pred。
5. 对pred进行非极大值抑制,去除重复的预测框。
6. 遍历每个预测框,将其坐标进行缩放,使其适应原始图像的大小,并将其类别和置信度添加到name_list中。同时,将每个预测框的坐标和类别信息绘制在原始图像上,并将绘制的信息添加到info_show中。
7. 将info_show返回作为函数的输出结果。
阅读全文