def image_processing(img,device): img = cv2.resize(img, (168,48)) img = np.reshape(img, (48, 168, 3)) # normalize img = img.astype(np.float32) img = (img / 255. - mean_value) / std_value img = img.transpose([2, 0, 1]) img = torch.from_numpy(img) img = img.to(device) img = img.view(1, *img.size()) return img
时间: 2023-06-27 08:03:42 浏览: 163
这段代码是图像处理的函数,它实现的功能是将原始图像进行大小重置、归一化处理和转换成 PyTorch 的张量格式。具体来说,该函数实现了以下几个步骤:
1. 使用 OpenCV 库中的 cv2.resize() 函数将原始图像重置为大小为 (168, 48) 的图像。
2. 将图像的像素值从 [0, 255] 范围归一化到 [-1, 1] 范围,以便于神经网络的处理。这里使用了预先计算好的均值和标准差值进行归一化,mean_value 和 std_value 分别代表均值和标准差。
3. 将图像的维度顺序从 (48, 168, 3) 转换为 (3, 48, 168) 的格式,以符合 PyTorch 的输入格式要求。
4. 将图像转换成 PyTorch 的张量格式,并将其移动到指定的设备上(例如 CPU 或 GPU)。
5. 将图像的维度扩展一维,以符合神经网络的输入要求。
最终,该函数返回处理后的图像张量。
相关问题
逐行详细解释以下代码并加注释from tensorflow import keras import matplotlib.pyplot as plt base_image_path = keras.utils.get_file( "coast.jpg", origin="https://img-datasets.s3.amazonaws.com/coast.jpg") plt.axis("off") plt.imshow(keras.utils.load_img(base_image_path)) #instantiating a model from tensorflow.keras.applications import inception_v3 model = inception_v3.InceptionV3(weights='imagenet',include_top=False) #配置各层对DeepDream损失的贡献 layer_settings = { "mixed4": 1.0, "mixed5": 1.5, "mixed6": 2.0, "mixed7": 2.5, } outputs_dict = dict( [ (layer.name, layer.output) for layer in [model.get_layer(name) for name in layer_settings.keys()] ] ) feature_extractor = keras.Model(inputs=model.inputs, outputs=outputs_dict) #定义损失函数 import tensorflow as tf def compute_loss(input_image): features = feature_extractor(input_image) loss = tf.zeros(shape=()) for name in features.keys(): coeff = layer_settings[name] activation = features[name] loss += coeff * tf.reduce_mean(tf.square(activation[:, 2:-2, 2:-2, :])) return loss #梯度上升过程 @tf.function def gradient_ascent_step(image, learning_rate): with tf.GradientTape() as tape: tape.watch(image) loss = compute_loss(image) grads = tape.gradient(loss, image) grads = tf.math.l2_normalize(grads) image += learning_rate * grads return loss, image def gradient_ascent_loop(image, iterations, learning_rate, max_loss=None): for i in range(iterations): loss, image = gradient_ascent_step(image, learning_rate) if max_loss is not None and loss > max_loss: break print(f"... Loss value at step {i}: {loss:.2f}") return image #hyperparameters step = 20. num_octave = 3 octave_scale = 1.4 iterations = 30 max_loss = 15. #图像处理方面 import numpy as np def preprocess_image(image_path): img = keras.utils.load_img(image_path) img = keras.utils.img_to_array(img) img = np.expand_dims(img, axis=0) img = keras.applications.inception_v3.preprocess_input(img) return img def deprocess_image(img): img = img.reshape((img.shape[1], img.shape[2], 3)) img /= 2.0 img += 0.5 img *= 255. img = np.clip(img, 0, 255).astype("uint8") return img #在多个连续 上运行梯度上升 original_img = preprocess_image(base_image_path) original_shape = original_img.shape[1:3] successive_shapes = [original_shape] for i in range(1, num_octave): shape = tuple([int(dim / (octave_scale ** i)) for dim in original_shape]) successive_shapes.append(shape) successive_shapes = successive_shapes[::-1] shrunk_original_img = tf.image.resize(original_img, successive_shapes[0]) img = tf.identity(original_img) for i, shape in enumerate(successive_shapes): print(f"Processing octave {i} with shape {shape}") img = tf.image.resize(img, shape) img = gradient_ascent_loop( img, iterations=iterations, learning_rate=step, max_loss=max_loss ) upscaled_shrunk_original_img = tf.image.resize(shrunk_original_img, shape) same_size_original = tf.image.resize(original_img, shape) lost_detail = same_size_original - upscaled_shrunk_original_img img += lost_detail shrunk_original_img = tf.image.resize(original_img, shape) keras.utils.save_img("DeepDream.png", deprocess_image(img.numpy()))
这段代码是一个使用 DeepDream 技术对一张图像进行处理的例子。下面对每一部分进行详细解释:
1. 导入所需的库
```python
from tensorflow import keras
import matplotlib.pyplot as plt
```
导入了 TensorFlow 和 Keras 库,以及用于绘制图像的 Matplotlib 库。
2. 加载图像
```python
base_image_path = keras.utils.get_file(
"coast.jpg", origin="https://img-datasets.s3.amazonaws.com/coast.jpg")
plt.axis("off")
plt.imshow(keras.utils.load_img(base_image_path))
```
使用 `keras.utils.get_file` 函数从亚马逊 S3 存储桶中下载名为 "coast.jpg" 的图像,并使用 `keras.utils.load_img` 函数加载该图像。`plt.axis("off")` 和 `plt.imshow` 函数用于绘制该图像并关闭坐标轴。
3. 实例化模型
```python
from tensorflow.keras.applications import inception_v3
model = inception_v3.InceptionV3(weights='imagenet',include_top=False)
```
使用 Keras 库中的 InceptionV3 模型对图像进行处理。`weights='imagenet'` 表示使用预训练的权重,`include_top=False` 表示去掉模型的顶层(全连接层)。
4. 配置 DeepDream 损失
```python
layer_settings = {
"mixed4": 1.0,
"mixed5": 1.5,
"mixed6": 2.0,
"mixed7": 2.5,
}
outputs_dict = dict(
[(layer.name, layer.output) for layer in [model.get_layer(name) for name in layer_settings.keys()]]
)
feature_extractor = keras.Model(inputs=model.inputs, outputs=outputs_dict)
```
通过配置不同层对 DeepDream 损失的贡献来控制图像的风格。该代码块中的 `layer_settings` 字典定义了每层对损失的贡献,`outputs_dict` 变量将每层的输出保存到一个字典中,`feature_extractor` 变量实例化一个新模型来提取特征。
5. 定义损失函数
```python
import tensorflow as tf
def compute_loss(input_image):
features = feature_extractor(input_image)
loss = tf.zeros(shape=())
for name in features.keys():
coeff = layer_settings[name]
activation = features[name]
loss += coeff * tf.reduce_mean(tf.square(activation[:, 2:-2, 2:-2, :]))
return loss
```
定义了一个计算 DeepDream 损失的函数。该函数首先使用 `feature_extractor` 模型提取输入图像的特征,然后计算每层对损失的贡献并相加,最终返回总损失。
6. 梯度上升过程
```python
@tf.function
def gradient_ascent_step(image, learning_rate):
with tf.GradientTape() as tape:
tape.watch(image)
loss = compute_loss(image)
grads = tape.gradient(loss, image)
grads = tf.math.l2_normalize(grads)
image += learning_rate * grads
return loss, image
def gradient_ascent_loop(image, iterations, learning_rate, max_loss=None):
for i in range(iterations):
loss, image = gradient_ascent_step(image, learning_rate)
if max_loss is not None and loss > max_loss:
break
print(f"... Loss value at step {i}: {loss:.2f}")
return image
```
定义了一个用于实现梯度上升过程的函数。`gradient_ascent_step` 函数计算输入图像的损失和梯度,然后对图像进行梯度上升并返回更新后的图像和损失。`gradient_ascent_loop` 函数使用 `gradient_ascent_step` 函数实现多次迭代,每次迭代都会计算损失和梯度,并对输入图像进行更新。
7. 设置超参数
```python
step = 20.
num_octave = 3
octave_scale = 1.4
iterations = 30
max_loss = 15.
```
设置了一些 DeepDream 算法的超参数,例如梯度上升步长、金字塔层数、金字塔缩放比例、迭代次数和损失上限。
8. 图像处理
```python
import numpy as np
def preprocess_image(image_path):
img = keras.utils.load_img(image_path)
img = keras.utils.img_to_array(img)
img = np.expand_dims(img, axis=0)
img = keras.applications.inception_v3.preprocess_input(img)
return img
def deprocess_image(img):
img = img.reshape((img.shape[1], img.shape[2], 3))
img /= 2.0
img += 0.5
img *= 255.
img = np.clip(img, 0, 255).astype("uint8")
return img
```
定义了两个函数,`preprocess_image` 函数将输入图像进行预处理,`deprocess_image` 函数将处理后的图像进行还原。
9. DeepDream 算法过程
```python
original_img = preprocess_image(base_image_path)
original_shape = original_img.shape[1:3]
successive_shapes = [original_shape]
for i in range(1, num_octave):
shape = tuple([int(dim / (octave_scale ** i)) for dim in original_shape])
successive_shapes.append(shape)
successive_shapes = successive_shapes[::-1]
shrunk_original_img = tf.image.resize(original_img, successive_shapes[0])
img = tf.identity(original_img)
for i, shape in enumerate(successive_shapes):
print(f"Processing octave {i} with shape {shape}")
img = tf.image.resize(img, shape)
img = gradient_ascent_loop(
img, iterations=iterations, learning_rate=step, max_loss=max_loss
)
upscaled_shrunk_original_img = tf.image.resize(shrunk_original_img, shape)
same_size_original = tf.image.resize(original_img, shape)
lost_detail = same_size_original - upscaled_shrunk_original_img
img += lost_detail
shrunk_original_img = tf.image.resize(original_img, shape)
keras.utils.save_img("DeepDream.png", deprocess_image(img.numpy()))
```
使用预先定义的函数和变量实现了 DeepDream 算法的过程。首先对原始图像进行预处理,然后根据金字塔层数和缩放比例生成多个连续的图像,对每个图像进行梯度上升处理,最终将所有处理后的图像进行合并,并使用 `keras.utils.save_img` 函数保存最终结果。
程序无法执行,修改class Processor(): def __init__(self): self._inspect_step = int(cfg.get('PROCESS', 'INSPECT_STEP')) def capture_img(self): global aco aco = aco + 1 self._cam.stream_on() raw_image = self._cam.data_stream[0].get_image() if raw_image is None: print("Getting image failed.\n") return None print("Frame ID: {} Height: {} Width: {} Count: {}\n" .format(raw_image.get_frame_id(), raw_image.get_height(), raw_image.get_width(), aco - 2)) numpy_image = raw_image.get_numpy_array() if numpy_image is None: return None img = Image.fromarray(numpy_image, 'L') if self._issave: picfile = '{}/{}.bmp'.format(self._picpath, self._piccount) self._piccount = self._piccount + 1 img.save(picfile) if self._isshow: w, h = img.size scale = min(1.0 * IMG_RESIZE_W / w, 1.0 * IMG_RESIZE_H / h) self._img = ImageTk.PhotoImage(image=img.resize((int(w * scale), int(h * scale)), Image.ANTIALIAS)) self._show_cb(self._img) self._cam.stream_off() return img def process_img(self, img): return PROC_OK def inspect(self): print("process2") time.sleep(1) def rotate(self): count = 0 aco = 0 self.threadsignal = 0 while self._running: v = self._dgl.qpin(ROT) if len(v) > 0: count = count + sum(v) if count > self._inspect_step: aco += 1 img = self.capture_img() count = count - self._inspect_step if __name__ == '__main__': task2 = multiprocessing.Process(target=self.inspect) task2.start() task1 = multiprocessing.Process(target=self.rotate) task1.start()
在这段代码中,有几个问题可以被改进。首先,类 `Processor` 中的全局变量 `aco` 可能会导致并发问题,在多进程环境下应该避免使用全局变量。其次,代码中出现了 `time.sleep()`,这会阻塞当前进程并造成性能瓶颈,应该尽量避免使用。
以下是可能的改进方案:
1. 将 `aco` 变量改为实例变量,避免多进程之间的并发问题。
2. 使用 `Queue` 或其他进程间通信机制替代全局变量,避免多进程之间的竞争。
3. 将 `time.sleep()` 改为使用定时器或者事件,避免阻塞进程并提高程序的性能。
4. 在多进程环境中,使用 `if __name__ == '__main__':` 来避免创建子进程时出现递归调用的问题。
以下是修改后的代码示例:
```python
import multiprocessing
from queue import Queue
import time
class Processor():
def __init__(self):
self._inspect_step = int(cfg.get('PROCESS', 'INSPECT_STEP'))
self._aco = 0
self._queue = Queue()
def capture_img(self):
self._aco += 1
self._cam.stream_on()
raw_image = self._cam.data_stream[0].get_image()
if raw_image is None:
print("Getting image failed.\n")
return None
print("Frame ID: {} Height: {} Width: {} Count: {}\n".format(raw_image.get_frame_id(), raw_image.get_height(), raw_image.get_width(), self._aco - 2))
numpy_image = raw_image.get_numpy_array()
if numpy_image is None:
return None
img = Image.fromarray(numpy_image, 'L')
if self._issave:
picfile = '{}/{}.bmp'.format(self._picpath, self._piccount)
self._piccount = self._piccount + 1
img.save(picfile)
if self._isshow:
w, h = img.size
scale = min(1.0 * IMG_RESIZE_W / w, 1.0 * IMG_RESIZE_H / h)
self._img = ImageTk.PhotoImage(image=img.resize((int(w * scale), int(h * scale)), Image.ANTIALIAS))
self._show_cb(self._img)
self._cam.stream_off()
return img
def process_img(self, img):
return PROC_OK
def inspect(self):
print("process2")
while self._running:
time.sleep(1)
self._queue.put("task")
def rotate(self):
count = 0
while self._running:
v = self._dgl.qpin(ROT)
if len(v) > 0:
count = count + sum(v)
if count > self._inspect_step:
self._aco += 1
img = self.capture_img()
count = count - self._inspect_step
try:
task = self._queue.get(block=False)
if task == "task":
print("processing task")
except:
pass
if __name__ == '__main__':
p = Processor()
p._running = True
task2 = multiprocessing.Process(target=p.inspect)
task2.start()
task1 = multiprocessing.Process(target=p.rotate)
task1.start()
```
请注意,这里只是对原始代码的一些修改建议,并不能保证这样的修改能够完全解决问题。在实际环境中,还需要根据具体情况进行调整和优化。
阅读全文