CocoDetection(root=r'D:\file\study\data\COCO2017\train2017', annFile=r'D:\file\study\data\COCO2017\annotations\instances_train2017.json', transforms=transforms.Compose([transforms.ToTensor()]))在读取数据时应该怎样接收数据,for images, targets in train_loader:可以吗

时间: 2023-07-21 17:14:52 浏览: 80
`CocoDetection`是一个用于读取COCO数据集的类,可以使用`DataLoader`来将数据读取为批量数据。你可以使用以下代码来创建一个数据加载器: ```python from torch.utils.data import DataLoader coco_dataset = CocoDetection(root=r'D:\file\study\data\COCO2017\train2017', annFile=r'D:\file\study\data\COCO2017\annotations\instances_train2017.json', transforms=transforms.Compose([transforms.ToTensor()])) train_loader = DataLoader(coco_dataset, batch_size=32, shuffle=True) for images, targets in train_loader: # do something with images and targets ``` 在这个代码中,`batch_size`参数指定了每个批次数据的大小,`shuffle`参数指定了是否对数据进行洗牌。当你使用`train_loader`迭代时,它将返回一个元组`(images, targets)`,其中`images`是一个大小为`(batch_size, 3, H, W)`的张量,表示一个批次的图像数据。`targets`是一个列表,其中每个元素都是一个长度为`N`的字典,表示一个批次的目标数据,其中`N`是该批次中所有目标的数量。你可以根据需要自定义处理`images`和`targets`的方式。
阅读全文

相关推荐

[ 62.097451] type=1400 audit(1686032696.903:62): avc: denied { map } for comm="network.sh" path="/system/bin/sh" dev="dm-7" ino=720 scontext=u:r:network_sh:s0 tcontext=u:object_r:shell_exec:s0 tclass=file permissive=1 [ 62.097570] type=1400 audit(1686032696.903:62): avc: denied { read } for comm="network.sh" path="/system/bin/sh" dev="dm-7" ino=720 scontext=u:r:network_sh:s0 tcontext=u:object_r:shell_exec:s0 tclass=file permissive=1 [ 62.097709] type=1400 audit(1686032696.903:62): avc: denied { execute } for comm="network.sh" path="/system/bin/sh" dev="dm-7" ino=720 scontext=u:r:network_sh:s0 tcontext=u:object_r:shell_exec:s0 tclass=file permissive=1 [ 62.113304] type=1400 audit(1686032696.935:63): avc: denied { getattr } for comm="network.sh" path="/system/bin/sh" dev="dm-7" ino=720 scontext=u:r:network_sh:s0 tcontext=u:object_r:shell_exec:s0 tclass=file permissive=1 [ 62.143732] type=1400 audit(1686032696.971:64): avc: denied { read } for comm="network.sh" name="ifconfig" dev="dm-7" ino=561 scontext=u:r:network_sh:s0 tcontext=u:object_r:init-ifconfig_exec:s0 tclass=lnk_file permissive=1 [ 62.150395] type=1400 audit(1686032696.971:64): avc: denied { getattr } for comm="network.sh" path="/system/bin/toybox" dev="dm-7" ino=766 scontext=u:r:network_sh:s0 tcontext=u:object_r:toolbox_exec:s0 tclass=file permissive=1 [ 62.150484] type=1400 audit(1686032696.979:65): avc: denied { execute } for comm="network.sh" name="toybox" dev="dm-7" ino=766 scontext=u:r:network_sh:s0 tcontext=u:object_r:toolbox_exec:s0 tclass=file permissive=1 [ 62.150537] type=1400 audit(1686032696.979:66): avc: denied { read open } for comm="network.sh" path="/system/bin/toybox" dev="dm-7" ino=766 scontext=u:r:network_sh:s0 tcontext=u:object_r:toolbox_exec:s0 tclass=file permissive=1 [ 62.150676] type=1400 audit(1686032696.979:66): avc: denied { execute_no_trans } for comm="network.sh" path="/system/bin/toybox" dev="dm-7" ino=766 scontext=u:r:network_sh:s0 tcontext=u:object_r:toolbox_exec:s0 tclass=file permissive=1 [ 62.151933] type=1400 audit(1686032696.979:66): avc: denied { map } for comm="ifconfig" path="/system/bin/toybox" dev="dm-7" ino=766 scontext=u:r:network_sh:s0 tcontext=u:object_r:toolbox_exec:s0 tclass=file permissive=1 改写avc规则

dataset = CocoDetection(root=r'D:\file\study\data\COCO2017\train2017', annFile=r'D:\file\study\data\COCO2017\annotations\instances_train2017.json', transforms=transforms.Compose([transforms.ToTensor()])) # 定义训练集和测试集的比例 train_ratio = 0.8 test_ratio = 0.2 # 计算训练集和测试集的数据数量 num_data = len(dataset) num_train_data = int(num_data * train_ratio) num_test_data = num_data - num_train_data # 使用random_split函数将数据集划分为训练集和测试集 train_dataset, test_dataset = random_split(dataset, [num_train_data, num_test_data]) # 打印训练集和测试集的数据数量 print(f"Number of training data: {len(train_dataset)}") print(f"Number of test data: {len(test_dataset)}") train_loader = DataLoader(train_dataset, batch_size=8, shuffle=True, num_workers=0) test_loader = DataLoader(test_dataset, batch_size=8, shuffle=True, num_workers=0) # define the optimizer and the learning rate scheduler params = [p for p in model.parameters() if p.requires_grad] optimizer = torch.optim.SGD(params, lr=0.005, momentum=0.9, weight_decay=0.0005) lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=3, gamma=0.1) # train the model for 10 epochs num_epochs = 10 for epoch in range(num_epochs): # 将模型设置为训练模式 model.train() # 初始化训练损失的累计值 train_loss = 0.0 # 构建一个迭代器,用于遍历数据集 for i, images, targets in train_loader: print(images) print(targets) # 将数据转移到设备上 images = list(image.to(device) for image in images) targets = [{k: v.to(device) for k, v in t.items()} for t in targets]上述代码报错:TypeError: call() takes 2 positional arguments but 3 were given

最新推荐

recommend-type

mysql启动时报错:Starting MySQL… ERROR! The server quit without updating PID file

chown -R mysql.mysql /usr/local/mysql/data ``` 之后,重启mysqld服务。为确保安全,可以考虑将整个MySQL程序目录授权给mysql用户。 2. **已存在的MySQL进程**: 有时,即使MySQL看似未运行,但实际上可能...
recommend-type

64位linux 编译c提示gnu/stubs-32.h:No such file or directory的解决方法

在编译过程中,可能还会出现其他错误,例如make[1]: Entering directory `/root/rpmbuild/BUILD/test/conf',make[1]: * [conf_init32.o] Error 1等等。这些错误都是由于缺少32位兼容包导致的,可以通过安装相应的包...
recommend-type

基于STM32单片机的激光雕刻机控制系统设计-含详细步骤和代码

内容概要:本文详细介绍了基于STM32单片机的激光雕刻机控制系统的设计。系统包括硬件设计、软件设计和机械结构设计,主要功能有可调节激光功率大小、改变雕刻速率、手动定位、精确雕刻及切割。硬件部分包括STM32最小系统、步进电机驱动模块、激光发生器控制电路、人机交互电路和串口通信电路。软件部分涉及STM32CubeMX配置、G代码解析、步进电机控制、激光功率调节和手动定位功能的实现。 适合人群:对嵌入式系统和激光雕刻机感兴趣的工程师和技术人员。 使用场景及目标:① 适用于需要高精度激光雕刻的应用场合;② 为开发类似的激光雕刻控制系统提供设计参考。 阅读建议:本文提供了详细的硬件和软件设计方案,读者应结合实际应用场景进行理解,重点关注电路设计和代码实现。
recommend-type

白色简洁风格的前端网站模板下载.zip

白色简洁风格的前端网站模板下载.zip
recommend-type

HarmonyException如何解决.md

HarmonyException如何解决.md
recommend-type

WildFly 8.x中Apache Camel结合REST和Swagger的演示

资源摘要信息:"CamelEE7RestSwagger:Camel on EE 7 with REST and Swagger Demo" 在深入分析这个资源之前,我们需要先了解几个关键的技术组件,它们是Apache Camel、WildFly、Java DSL、REST服务和Swagger。下面是这些知识点的详细解析: 1. Apache Camel框架: Apache Camel是一个开源的集成框架,它允许开发者采用企业集成模式(Enterprise Integration Patterns,EIP)来实现不同的系统、应用程序和语言之间的无缝集成。Camel基于路由和转换机制,提供了各种组件以支持不同类型的传输和协议,包括HTTP、JMS、TCP/IP等。 2. WildFly应用服务器: WildFly(以前称为JBoss AS)是一款开源的Java应用服务器,由Red Hat开发。它支持最新的Java EE(企业版Java)规范,是Java企业应用开发中的关键组件之一。WildFly提供了一个全面的Java EE平台,用于部署和管理企业级应用程序。 3. Java DSL(领域特定语言): Java DSL是一种专门针对特定领域设计的语言,它是用Java编写的小型语言,可以在Camel中用来定义路由规则。DSL可以提供更简单、更直观的语法来表达复杂的集成逻辑,它使开发者能够以一种更接近业务逻辑的方式来编写集成代码。 4. REST服务: REST(Representational State Transfer)是一种软件架构风格,用于网络上客户端和服务器之间的通信。在RESTful架构中,网络上的每个资源都被唯一标识,并且可以使用标准的HTTP方法(如GET、POST、PUT、DELETE等)进行操作。RESTful服务因其轻量级、易于理解和使用的特性,已经成为Web服务设计的主流风格。 5. Swagger: Swagger是一个开源的框架,它提供了一种标准的方式来设计、构建、记录和使用RESTful Web服务。Swagger允许开发者描述API的结构,这样就可以自动生成文档、客户端库和服务器存根。通过Swagger,可以清晰地了解API提供的功能和如何使用这些API,从而提高API的可用性和开发效率。 结合以上知识点,CamelEE7RestSwagger这个资源演示了如何在WildFly应用服务器上使用Apache Camel创建RESTful服务,并通过Swagger来记录和展示API信息。整个过程涉及以下几个技术步骤: - 首先,需要在WildFly上设置和配置Camel环境,确保Camel能够运行并且可以作为路由引擎来使用。 - 其次,通过Java DSL编写Camel路由,定义如何处理来自客户端的HTTP请求,并根据请求的不同执行相应的业务逻辑。 - 接下来,使用Swagger来记录和描述创建的REST API。这包括定义API的路径、支持的操作、请求参数和响应格式等。 - 最后,通过Swagger提供的工具生成API文档和客户端代码,以及服务器端的存根代码,从而使得开发者可以更加便捷地理解和使用这些RESTful服务。 这个资源的实践演示对于想要学习如何在Java EE平台上使用Camel集成框架,并且希望提供和记录REST服务的开发者来说是非常有价值的。通过这种方式,开发者可以更加快速和简单地创建和管理Web服务,同时也增强了API的可访问性和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通

![【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通](https://docs.lammps.org/_images/lammps-gui-main.png) # 摘要 声子晶体作为一种具有周期性结构的材料,在声学隐身、微波和红外领域具有广泛的应用潜力。本文从基础理论出发,深入探讨了声子晶体的概念、物理模型和声子带结构的理论解析,同时介绍了声子晶体的数值模拟方法,包括有限元方法(FEM)、离散元方法(DEM)和分子动力学(MD)。本文还提供了一套完整的声子晶体模拟实践指南,涵盖了模拟前的准备工作、详细的模拟步骤以及结果验证和案例分析。此外,文章探讨了声子晶体模拟的高级技巧和拓展
recommend-type

2024-07-27怎么用python转换成农历日期

在Python中,可以使用`lunarcalendar`库来将公历日期转换为农历日期。首先,你需要安装这个库,可以通过pip命令进行安装: ```bash pip install lunarcalendar ``` 安装完成后,你可以使用以下代码将公历日期转换为农历日期: ```python from lunarcalendar import Converter, Solar, Lunar, DateNotExist # 创建一个公历日期对象 solar_date = Solar(2024, 7, 27) # 将公历日期转换为农历日期 try: lunar_date = Co
recommend-type

FDFS客户端Python库1.2.6版本发布

资源摘要信息:"FastDFS是一个开源的轻量级分布式文件系统,它对文件进行管理,功能包括文件存储、文件同步、文件访问等,适用于大规模文件存储和高并发访问场景。FastDFS为互联网应用量身定制,充分考虑了冗余备份、负载均衡、线性扩容等机制,保证系统的高可用性和扩展性。 FastDFS 架构包含两个主要的角色:Tracker Server 和 Storage Server。Tracker Server 作用是负载均衡和调度,它接受客户端的请求,为客户端提供文件访问的路径。Storage Server 作用是文件存储,一个 Storage Server 中可以有多个存储路径,文件可以存储在不同的路径上。FastDFS 通过 Tracker Server 和 Storage Server 的配合,可以完成文件上传、下载、删除等操作。 Python 客户端库 fdfs-client-py 是为了解决 FastDFS 文件系统在 Python 环境下的使用。fdfs-client-py 使用了 Thrift 协议,提供了文件上传、下载、删除、查询等接口,使得开发者可以更容易地利用 FastDFS 文件系统进行开发。fdfs-client-py 通常作为 Python 应用程序的一个依赖包进行安装。 针对提供的压缩包文件名 fdfs-client-py-master,这很可能是一个开源项目库的名称。根据文件名和标签“fdfs”,我们可以推测该压缩包包含的是 FastDFS 的 Python 客户端库的源代码文件。这些文件可以用于构建、修改以及扩展 fdfs-client-py 功能以满足特定需求。 由于“标题”和“描述”均与“fdfs-client-py-master1.2.6.zip”有关,没有提供其它具体的信息,因此无法从标题和描述中提取更多的知识点。而压缩包文件名称列表中只有一个文件“fdfs-client-py-master”,这表明我们目前讨论的资源摘要信息是基于对 FastDFS 的 Python 客户端库的一般性了解,而非基于具体文件内容的分析。 根据标签“fdfs”,我们可以深入探讨 FastDFS 相关的概念和技术细节,例如: - FastDFS 的分布式架构设计 - 文件上传下载机制 - 文件同步机制 - 元数据管理 - Tracker Server 的工作原理 - Storage Server 的工作原理 - 容错和数据恢复机制 - 系统的扩展性和弹性伸缩 在实际使用中,开发者可以通过 fdfs-client-py 库来与 FastDFS 文件系统进行交互,利用其提供的 API 接口实现文件的存储、管理等功能,从而开发出高效、可靠的文件处理应用。开发者可以根据项目的实际需求,选择合适的 FastDFS 版本,并根据官方文档进行安装、配置及优化,确保系统稳定运行。 总的来说,fdfs-client-py 是 FastDFS 文件系统与 Python 应用之间的一座桥梁,它使得开发者能够更加方便地将 FastDFS 集成到基于 Python 开发的应用中,发挥出 FastDFS 在文件管理方面的优势。"