使用c++语言编写Dijkstra+mpi算法完成sssp问题,要求使用压缩稀疏行来存储图,输出各个节点离一号节点的最短距离,并输出时间

时间: 2024-03-20 09:43:33 浏览: 66
以下是使用C++语言编写Dijkstra+MPI算法完成SSSP问题的代码,使用压缩稀疏行存储图,输出各个节点离一号节点的最短距离,并输出时间: ```c++ #include <iostream> #include <fstream> #include <cstring> #include <vector> #include <queue> #include <mpi.h> using namespace std; #define MAXN 1000000 #define INF 0x3f3f3f3f int n, m, start; int head[MAXN], to[MAXN], weight[MAXN], nxt[MAXN], idx; int dist[MAXN]; bool vis[MAXN]; void addEdge(int u, int v, int w) { to[idx] = v; weight[idx] = w; nxt[idx] = head[u]; head[u] = idx++; } void dijkstra(int start) { priority_queue<pair<int, int>, vector<pair<int, int> >, greater<pair<int, int> > > pq; memset(dist, INF, sizeof(dist)); memset(vis, false, sizeof(vis)); dist[start] = 0; pq.push(make_pair(dist[start], start)); while (!pq.empty()) { int u = pq.top().second; pq.pop(); if (vis[u]) continue; vis[u] = true; for (int i = head[u]; i != -1; i = nxt[i]) { int v = to[i]; int w = weight[i]; if (dist[v] > dist[u] + w) { dist[v] = dist[u] + w; pq.push(make_pair(dist[v], v)); } } } } int main(int argc, char *argv[]) { int rank, size; double start_time, end_time; MPI_Init(&argc, &argv); MPI_Comm_rank(MPI_COMM_WORLD, &rank); MPI_Comm_size(MPI_COMM_WORLD, &size); if (rank == 0) { ifstream fin("input.txt"); fin >> n >> m >> start; memset(head, -1, sizeof(head)); for (int i = 0; i < m; i++) { int u, v, w; fin >> u >> v >> w; addEdge(u, v, w); } fin.close(); } MPI_Barrier(MPI_COMM_WORLD); start_time = MPI_Wtime(); int local_n = n / size; int local_start = rank * local_n + 1; int local_end = (rank == size - 1) ? n : (rank + 1) * local_n; int local_dist[MAXN]; memset(local_dist, INF, sizeof(local_dist)); local_dist[start] = 0; int *recvbuf = new int[n]; int *displs = new int[size]; int *rdispls = new int[size]; int *recvcounts = new int[size]; for (int i = 0; i < size; i++) { displs[i] = i * local_n * (n + 1); rdispls[i] = i * (n + 1); recvcounts[i] = (i == size - 1) ? (n - i * local_n) * (n + 1) : local_n * (n + 1); } int *sendbuf = new int[local_n * (n + 1)]; memset(sendbuf, INF, sizeof(sendbuf)); for (int i = 0; i < local_n; i++) { int u = local_start + i; for (int j = head[u]; j != -1; j = nxt[j]) { int v = to[j]; int w = weight[j]; sendbuf[i * (n + 1) + v] = w; } } MPI_Allgatherv(sendbuf, local_n * (n + 1), MPI_INT, recvbuf, recvcounts, displs, MPI_INT, MPI_COMM_WORLD); for (int k = 1; k <= n; k++) { for (int i = 0; i < size; i++) { int *local_recvbuf = new int[recvcounts[i]]; memcpy(local_recvbuf, recvbuf + displs[i], recvcounts[i] * sizeof(int)); for (int j = local_start; j <= local_end; j++) { if (j == k) continue; int w = local_dist[k] + local_recvbuf[(j - 1) * (n + 1) + k]; if (local_dist[j] > w) { local_dist[j] = w; } } memcpy(recvbuf + rdispls[i], local_recvbuf, recvcounts[i] * sizeof(int)); delete[] local_recvbuf; } MPI_Allgatherv(MPI_IN_PLACE, 0, MPI_DATATYPE_NULL, recvbuf, recvcounts, displs, MPI_INT, MPI_COMM_WORLD); } if (rank == 0) { for (int i = 1; i <= n; i++) { cout << "Distance from " << start << " to " << i << " is " << recvbuf[i] << endl; } } MPI_Barrier(MPI_COMM_WORLD); end_time = MPI_Wtime(); if (rank == 0) { cout << "Time: " << end_time - start_time << " seconds" << endl; } MPI_Finalize(); delete[] recvbuf; delete[] sendbuf; delete[] displs; delete[] rdispls; delete[] recvcounts; return 0; } ``` 其中,使用MPI_Allgatherv函数进行进程间通信,每个进程计算出自己的局部最短路径后,使用MPI_Allgatherv函数将结果汇总到所有进程,最后输出结果。
阅读全文

相关推荐

最新推荐

recommend-type

Dijkstra算法最短路径的C++实现与输出路径

"Dijkstra算法最短路径的C++实现与输出路径" Dijkstra算法是解决单源最短路径问题的经典算法, 由荷兰计算机科学家Edsger W. Dijkstra在1956年提出。该算法可以解决从某个源点到其他所有顶点的最短路径问题。 ...
recommend-type

C++用Dijkstra(迪杰斯特拉)算法求最短路径

总之,Dijkstra算法在C++中实现的关键在于正确地存储图的结构,初始化和更新最短路径估计,以及有效地找到未处理顶点中的最近顶点。它在许多实际问题中都有广泛的应用,如路由规划、网络流量优化等。
recommend-type

C++求所有顶点之间的最短路径(用Dijkstra算法)

C++求所有顶点之间的最短路径(用Dijkstra算法) 以下是从给定文件信息中生成的相关知识点: 1. Dijkstra算法的定义和原理: Dijkstra算法是一种常用的最短路径算法,用于计算图中从一个顶点到所有其他顶点的最短...
recommend-type

最短路径算法—Dijkstra(迪杰斯特拉)算法分析与实现(CC++)

在C/C++中,Dijkstra算法的实现通常涉及一个二维数组c表示图的边权重,以及一维数组dist和prev分别存储最短路径的长度和前驱节点。在上述代码中,可以看到算法的逻辑: - 第14行的Dijkstra函数接收图的节点数n,...
recommend-type

036GraphTheory(图论) matlab代码.rar

1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
recommend-type

macOS 10.9至10.13版高通RTL88xx USB驱动下载

资源摘要信息:"USB_RTL88xx_macOS_10.9_10.13_driver.zip是一个为macOS系统版本10.9至10.13提供的高通USB设备驱动压缩包。这个驱动文件是针对特定的高通RTL88xx系列USB无线网卡和相关设备的,使其能够在苹果的macOS操作系统上正常工作。通过这个驱动,用户可以充分利用他们的RTL88xx系列设备,包括但不限于USB无线网卡、USB蓝牙设备等,从而实现在macOS系统上的无线网络连接、数据传输和其他相关功能。 高通RTL88xx系列是广泛应用于个人电脑、笔记本、平板和手机等设备的无线通信组件,支持IEEE 802.11 a/b/g/n/ac等多种无线网络标准,为用户提供了高速稳定的无线网络连接。然而,为了在不同的操作系统上发挥其性能,通常需要安装相应的驱动程序。特别是在macOS系统上,由于操作系统的特殊性,不同版本的系统对硬件的支持和驱动的兼容性都有不同的要求。 这个压缩包中的驱动文件是特别为macOS 10.9至10.13版本设计的。这意味着如果你正在使用的macOS版本在这个范围内,你可以下载并解压这个压缩包,然后按照说明安装驱动程序。安装过程通常涉及运行一个安装脚本或应用程序,或者可能需要手动复制特定文件到系统目录中。 请注意,在安装任何第三方驱动程序之前,应确保从可信赖的来源获取。安装非官方或未经认证的驱动程序可能会导致系统不稳定、安全风险,甚至可能违反操作系统的使用条款。此外,在安装前还应该查看是否有适用于你设备的更新驱动版本,并考虑备份系统或创建恢复点,以防安装过程中出现问题。 在标签"凄 凄 切 切 群"中,由于它们似乎是无意义的汉字组合,并没有提供有关该驱动程序的具体信息。如果这是一组随机的汉字,那可能是压缩包文件名的一部分,或者可能是文件在上传或处理过程中产生的错误。因此,这些标签本身并不提供与驱动程序相关的任何技术性知识点。 总结来说,USB_RTL88xx_macOS_10.9_10.13_driver.zip包含了用于特定高通RTL88xx系列USB设备的驱动,适用于macOS 10.9至10.13版本的操作系统。在安装驱动之前,应确保来源的可靠性,并做好必要的系统备份,以防止潜在的系统问题。"
recommend-type

PyCharm开发者必备:提升效率的Python环境管理秘籍

# 摘要 本文系统地介绍了PyCharm集成开发环境的搭建、配置及高级使用技巧,重点探讨了如何通过PyCharm进行高效的项目管理和团队协作。文章详细阐述了PyCharm项目结构的优化方法,包括虚拟环境的有效利用和项目依赖的管理。同时,本文也深入分析了版本控制的集成流程,如Git和GitHub的集成,分支管理和代码合并策略。为了提高代码质量,本文提供了配置和使用linters以及代码风格和格式化工具的指导。此外,本文还探讨了PyCharm的调试与性能分析工具,插件生态系统,以及定制化开发环境的技巧。在团队协作方面,本文讲述了如何在PyCharm中实现持续集成和部署(CI/CD)、代码审查,以及
recommend-type

matlab中VBA指令集

MATLAB是一种强大的数值计算和图形处理软件,主要用于科学计算、工程分析和技术应用。虽然它本身并不是基于Visual Basic (VB)的,但在MATLAB环境中可以利用一种称为“工具箱”(Toolbox)的功能,其中包括了名为“Visual Basic for Applications”(VBA)的接口,允许用户通过编写VB代码扩展MATLAB的功能。 MATLAB的VBA指令集实际上主要是用于操作MATLAB的工作空间(Workspace)、图形界面(GUIs)以及调用MATLAB函数。VBA代码可以在MATLAB环境下运行,执行的任务可能包括但不限于: 1. 创建和修改变量、矩阵
recommend-type

在Windows Forms和WPF中实现FontAwesome-4.7.0图形

资源摘要信息: "将FontAwesome470应用于Windows Forms和WPF" 知识点: 1. FontAwesome简介: FontAwesome是一个广泛使用的图标字体库,它提供了一套可定制的图标集合,这些图标可以用于Web、桌面和移动应用的界面设计。FontAwesome 4.7.0是该库的一个版本,它包含了大量常用的图标,用户可以通过简单的CSS类名引用这些图标,而无需下载单独的图标文件。 2. .NET开发中的图形处理: 在.NET开发中,图形处理是一个重要的方面,它涉及到创建、修改、显示和保存图像。Windows Forms和WPF(Windows Presentation Foundation)是两种常见的用于构建.NET桌面应用程序的用户界面框架。Windows Forms相对较为传统,而WPF提供了更为现代和丰富的用户界面设计能力。 3. 将FontAwesome集成到Windows Forms中: 要在Windows Forms应用程序中使用FontAwesome图标,首先需要将FontAwesome字体文件(通常是.ttf或.otf格式)添加到项目资源中。然后,可以通过设置控件的字体属性来使用FontAwesome图标,例如,将按钮的字体设置为FontAwesome,并通过设置其Text属性为相应的FontAwesome类名(如"fa fa-home")来显示图标。 4. 将FontAwesome集成到WPF中: 在WPF中集成FontAwesome稍微复杂一些,因为WPF对字体文件的支持有所不同。首先需要在项目中添加FontAwesome字体文件,然后通过XAML中的FontFamily属性引用它。WPF提供了一个名为"DrawingImage"的类,可以将图标转换为WPF可识别的ImageSource对象。具体操作是使用"FontIcon"控件,并将FontAwesome类名作为Text属性值来显示图标。 5. FontAwesome字体文件的安装和引用: 安装FontAwesome字体文件到项目中,通常需要先下载FontAwesome字体包,解压缩后会得到包含字体文件的FontAwesome-master文件夹。将这些字体文件添加到Windows Forms或WPF项目资源中,一般需要将字体文件复制到项目的相应目录,例如,对于Windows Forms,可能需要将字体文件放置在与主执行文件相同的目录下,或者将其添加为项目的嵌入资源。 6. 如何使用FontAwesome图标: 在使用FontAwesome图标时,需要注意图标名称的正确性。FontAwesome提供了一个图标检索工具,帮助开发者查找和确认每个图标的确切名称。每个图标都有一个对应的CSS类名,这个类名就是用来在应用程序中引用图标的。 7. 面向不同平台的应用开发: 由于FontAwesome最初是为Web开发设计的,将它集成到桌面应用中需要做一些额外的工作。在不同平台(如Web、Windows、Mac等)之间保持一致的用户体验,对于开发团队来说是一个重要考虑因素。 8. 版权和使用许可: 在使用FontAwesome字体图标时,需要遵守其提供的许可证协议。FontAwesome有多个许可证版本,包括免费的公共许可证和个人许可证。开发者在将FontAwesome集成到项目中时,应确保符合相关的许可要求。 9. 资源文件管理: 在管理包含FontAwesome字体文件的项目时,应当注意字体文件的维护和更新,确保在未来的项目版本中能够继续使用这些图标资源。 10. 其他图标字体库: FontAwesome并不是唯一一个图标字体库,还有其他类似的选择,例如Material Design Icons、Ionicons等。开发人员可以根据项目需求和偏好选择合适的图标库,并学习如何将它们集成到.NET桌面应用中。 以上知识点总结了如何将FontAwesome 4.7.0这一图标字体库应用于.NET开发中的Windows Forms和WPF应用程序,并涉及了相关的图形处理、资源管理和版权知识。通过这些步骤和细节,开发者可以更有效地增强其应用程序的视觉效果和用户体验。
recommend-type

【Postman进阶秘籍】:解锁高级API测试与管理的10大技巧

# 摘要 本文系统地介绍了Postman工具的基础使用方法和高级功能,旨在提高API测试的效率与质量。第一章概述了Postman的基本操作,为读者打下使用基础。第二章深入探讨了Postman的环境变量设置、集合管理以及自动化测试流程,特别强调了测试脚本的编写和持续集成的重要性。第三章介绍了数据驱动测试、高级断言技巧以及性能测试,这些都是提高测试覆盖率和测试准确性的关键技巧。第四章侧重于API的管理,包括版本控制、文档生成和分享,以及监控和报警系统的设计,这些是维护和监控API的关键实践。最后,第五章讨论了Postman如何与DevOps集成以及插件的使用和开发,展示了Postman在更广阔的应