softmax函数回归代码实现
时间: 2023-05-20 17:02:08 浏览: 114
softmax回归代码
以下是一个使用Python实现softmax函数回归的代码示例:
```python
import numpy as np
def softmax(x):
exp_x = np.exp(x)
return exp_x / np.sum(exp_x)
def softmax_regression(X, y, num_classes, num_iterations, learning_rate):
num_features = X.shape[1]
weights = np.zeros((num_features, num_classes))
for i in range(num_iterations):
for j in range(X.shape[0]):
x = X[j]
y_true = y[j]
y_pred = softmax(np.dot(x, weights))
error = y_pred - (y_true == np.arange(num_classes))
gradient = np.outer(x, error)
weights -= learning_rate * gradient
return weights
# Example usage
X = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
y = np.array([0, 1, 2])
num_classes = 3
num_iterations = 1000
learning_rate = 0.1
weights = softmax_regression(X, y, num_classes, num_iterations, learning_rate)
print(weights)
```
这个代码实现了一个简单的softmax函数回归模型,用于多分类问题。给定一个输入向量x,模型通过将x与权重矩阵相乘并应用softmax函数来预测每个类别的概率。在训练过程中,模型使用梯度下降算法来最小化交叉熵损失函数。
阅读全文