写出从图的邻接表表示转换成邻接矩阵表示的算法

时间: 2023-04-30 09:01:19 浏览: 119
从图的邻接表表示转换成邻接矩阵表示的算法如下: 1. 统计图中的节点数n,创建一个n*n的邻接矩阵,初始值为0。 2. 遍历邻接表中的每个节点,对于每个节点i,遍历其邻居节点j,将邻接矩阵中第i行第j列和第j行第i列的值设为1,表示节点i和节点j之间有一条边。 3. 遍历完所有节点后,邻接矩阵表示的图就构建完成了。 例如,对于以下邻接表表示的图: 0 -> 1 -> 2 1 -> 0 -> 2 -> 3 2 -> 0 -> 1 -> 3 3 -> 1 -> 2 转换成邻接矩阵表示的图如下: 0 1 2 3 0 0 1 1 0 1 1 0 1 1 2 1 1 0 1 3 0 1 1 0 其中,第i行第j列和第j行第i列的值为1表示节点i和节点j之间有一条边,值为0表示没有边。
相关问题

c语言写出从图的邻接表表示转换成邻接矩阵表示的算法

以下是将图的邻接表表示转换为邻接矩阵表示的C语言算法示例: ```c #include <stdio.h> #include <stdlib.h> // 定义图的最大顶点数 #define MAX_VERTEX_NUM 100 // 邻接表结点 typedef struct ArcNode { int adjvex; // 邻接点下标 struct ArcNode* nextarc; // 指向下一个邻接点的指针 } ArcNode; // 顶点表结点 typedef struct { int data; // 顶点信息 ArcNode* firstarc; // 指向第一个邻接点 } VNode; // 图结构 typedef struct { VNode vertices[MAX_VERTEX_NUM]; // 顶点表 int vexnum; // 顶点数 int arcnum; // 边数 } Graph; // 初始化图 void initGraph(Graph* G, int vexnum) { G->vexnum = vexnum; G->arcnum = 0; for (int i = 0; i < vexnum; i++) { G->vertices[i].data = i; G->vertices[i].firstarc = NULL; } } // 添加边 void addEdge(Graph* G, int v1, int v2) { ArcNode* arcNode = (ArcNode*)malloc(sizeof(ArcNode)); arcNode->adjvex = v2; arcNode->nextarc = G->vertices[v1].firstarc; G->vertices[v1].firstarc = arcNode; G->arcnum++; } // 邻接表转换为邻接矩阵 void convertToMatrix(Graph* G, int matrix[MAX_VERTEX_NUM][MAX_VERTEX_NUM]) { for (int i = 0; i < G->vexnum; i++) { ArcNode* arcNode = G->vertices[i].firstarc; while (arcNode != NULL) { matrix[i][arcNode->adjvex] = 1; arcNode = arcNode->nextarc; } } } // 打印邻接矩阵 void printMatrix(Graph* G, int matrix[MAX_VERTEX_NUM][MAX_VERTEX_NUM]) { printf("Adjacency Matrix:\n"); for (int i = 0; i < G->vexnum; i++) { for (int j = 0; j < G->vexnum; j++) { printf("%d ", matrix[i][j]); } printf("\n"); } } int main() { int vexnum = 5; // 顶点数 Graph G; initGraph(&G, vexnum); // 添加边 addEdge(&G, 0, 1); addEdge(&G, 0, 2); addEdge(&G, 1, 3); addEdge(&G, 2, 1); addEdge(&G, 2, 3); addEdge(&G, 3, 4); // 创建邻接矩阵 int matrix[MAX_VERTEX_NUM][MAX_VERTEX_NUM] = {0}; convertToMatrix(&G, matrix); // 打印邻接矩阵 printMatrix(&G, matrix); return 0; } ``` 这个算法将图的邻接表表示转换为邻接矩阵表示。可以根据需要修改顶点数、添加边以及其他操作。注意这里的图是有向图,如果需要处理无向图,可以在添加边时同时添加反向的边。

写出从图的邻接表表示转换成邻接矩阵表示的算法, C语言写成过程形式。

以下是将图的邻接表表示转换为邻接矩阵表示的算法的C语言过程形式: ```c #include <stdio.h> #include <stdbool.h> #define MAX_VERTICES 100 // 邻接表的链表节点 struct Node { int vertex; struct Node* next; }; // 图的结构体 struct Graph { struct Node* adjLists[MAX_VERTICES]; }; // 创建新节点 struct Node* createNode(int v) { struct Node* newNode = (struct Node*)malloc(sizeof(struct Node)); newNode->vertex = v; newNode->next = NULL; return newNode; } // 创建图 struct Graph* createGraph() { struct Graph* graph = (struct Graph*)malloc(sizeof(struct Graph)); for (int i = 0; i < MAX_VERTICES; i++) { graph->adjLists[i] = NULL; } return graph; } // 添加边 void addEdge(struct Graph* graph, int src, int dest) { // 添加 src -> dest 边 struct Node* newNode = createNode(dest); newNode->next = graph->adjLists[src]; graph->adjLists[src] = newNode; } // 邻接表转邻接矩阵 void convertToMatrix(struct Graph* graph, int matrix[MAX_VERTICES][MAX_VERTICES]) { for (int i = 0; i < MAX_VERTICES; i++) { for (int j = 0; j < MAX_VERTICES; j++) { matrix[i][j] = 0; } } for (int i = 0; i < MAX_VERTICES; i++) { struct Node* node = graph->adjLists[i]; while (node != NULL) { matrix[i][node->vertex] = 1; node = node->next; } } } // 打印邻接矩阵 void printMatrix(int matrix[MAX_VERTICES][MAX_VERTICES], int numVertices) { for (int i = 0; i < numVertices; i++) { for (int j = 0; j < numVertices; j++) { printf("%d ", matrix[i][j]); } printf("\n"); } } int main() { struct Graph* graph = createGraph(); int numVertices, numEdges; // 输入顶点数和边数 printf("Enter the number of vertices: "); scanf("%d", &numVertices); printf("Enter the number of edges: "); scanf("%d", &numEdges); // 输入边信息 for (int i = 0; i < numEdges; i++) { int src, dest; printf("Enter edge %d (source destination): ", i + 1); scanf("%d %d", &src, &dest); addEdge(graph, src, dest); } // 创建邻接矩阵 int matrix[MAX_VERTICES][MAX_VERTICES]; convertToMatrix(graph, matrix); // 打印邻接矩阵 printf("Adjacency Matrix:\n"); printMatrix(matrix, numVertices); return 0; } ``` 在上述代码中,我们首先定义了邻接表的链表节点结构 `Node` 和图的结构体 `Graph`。然后,我们实现了创建新节点、创建图、添加边、邻接表转邻接矩阵和打印邻接矩阵的函数。在 `main` 函数中,我们先输入顶点数和边数,然后输入边的信息并使用邻接表表示图。接下来,我们调用 `convertToMatrix` 函数将邻接表转换为邻接矩阵,并调用 `printMatrix` 函数打印出邻接矩阵。 注意:上述代码仅为示例,实际使用时需要根据实际情况进行修改。

相关推荐

最新推荐

recommend-type

邻接表或者邻接矩阵为存储结构实现连通无向图的深度优先和广度优先遍历

程序设计任务: 设计一个程序,实现以邻接表或者邻接矩阵为存储结构,实现连通无向图的深度优先和广度优先遍历。基本要求:以邻接表或者邻接矩阵为存储结构,实现连通无向图的深度优先和广度优先遍历。以用户指定的...
recommend-type

邻接表的建立 图 算法 数据结构

#include #include"iostream" ... //邻接点域 struct node *next; //链域 }EdgeNode; typedef struct vnode{ //顶点表结点 char vertex; //顶点域 EdgeNode *firstedge; //边表头指针 }VertexNode;
recommend-type

高校学生选课系统项目源码资源

项目名称: 高校学生选课系统 内容概要: 高校学生选课系统是为了方便高校学生进行选课管理而设计的系统。该系统提供了学生选课、查看课程信息、管理个人课程表等功能,同时也为教师提供了课程发布和管理功能,以及管理员对整个选课系统的管理功能。 适用人群: 学生: 高校本科生和研究生,用于选课、查看课程信息、管理个人课程表等。 教师: 高校教师,用于发布课程、管理课程信息和学生选课情况等。 管理员: 系统管理员,用于管理整个选课系统,包括用户管理、课程管理、权限管理等。 使用场景及目标: 学生选课场景: 学生登录系统后可以浏览课程列表,根据自己的专业和兴趣选择适合自己的课程,并进行选课操作。系统会实时更新学生的选课信息,并生成个人课程表。 教师发布课程场景: 教师登录系统后可以发布新的课程信息,包括课程名称、课程描述、上课时间、上课地点等。发布后的课程将出现在课程列表中供学生选择。 管理员管理场景: 管理员可以管理系统的用户信息,包括学生、教师和管理员账号的添加、删除和修改;管理课程信息,包括课程的添加、删除和修改;管理系统的权限控制,包括用户权限的分配和管理。 目标: 为高校学生提
recommend-type

RTL8188FU-Linux-v5.7.4.2-36687.20200602.tar(20765).gz

REALTEK 8188FTV 8188eus 8188etv linux驱动程序稳定版本, 支持AP,STA 以及AP+STA 共存模式。 稳定支持linux4.0以上内核。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章

![:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章](https://img-blog.csdnimg.cn/img_convert/69b98e1a619b1bb3c59cf98f4e397cd2.png) # 1. 目标检测算法概述 目标检测算法是一种计算机视觉技术,用于识别和定位图像或视频中的对象。它在各种应用中至关重要,例如自动驾驶、视频监控和医疗诊断。 目标检测算法通常分为两类:两阶段算法和单阶段算法。两阶段算法,如 R-CNN 和 Fast R-CNN,首先生成候选区域,然后对每个区域进行分类和边界框回归。单阶段算法,如 YOLO 和 SSD,一次性执行检
recommend-type

info-center source defatult

这是一个 Cisco IOS 命令,用于配置 Info Center 默认源。Info Center 是 Cisco 设备的日志记录和报告工具,可以用于收集和查看设备的事件、警报和错误信息。该命令用于配置 Info Center 默认源,即设备的默认日志记录和报告服务器。在命令行界面中输入该命令后,可以使用其他命令来配置默认源的 IP 地址、端口号和协议等参数。
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

:YOLO目标检测算法的挑战与机遇:数据质量、计算资源与算法优化,探索未来发展方向

![:YOLO目标检测算法的挑战与机遇:数据质量、计算资源与算法优化,探索未来发展方向](https://img-blog.csdnimg.cn/7e3d12895feb4651b9748135c91e0f1a.png?x-oss-process=image/watermark,type_ZHJvaWRzYW5zZmFsbGJhY2s,shadow_50,text_Q1NETiBA5rKJ6YaJ77yM5LqO6aOO5Lit,size_20,color_FFFFFF,t_70,g_se,x_16) # 1. YOLO目标检测算法简介 YOLO(You Only Look Once)是一种