def build_discriminator(): input_shape = (100, 1) model_input = Input(shape=input_shape) x = LSTM(512, return_sequences=True)(model_input) x = Dropout(0.3)(x) x = LSTM(512)(x) x = Dropout(0.3)(x) x = Dense(256)(x) x = Dropout(0.3)(x) x = Dense(1, activation='sigmoid')(x) model = Model(model_input, x) return model
时间: 2023-11-25 12:06:17 浏览: 28
这段代码是用来构建一个基于 LSTM 的判别器模型,用于对生成的假数据进行判别,判断其是否为真实数据。该模型输入形状为 (100, 1),即输入数据有 100 个时间步,每个时间步的数据维度为 1。模型首先通过两层 LSTM 对输入数据进行处理,然后使用 Dropout 防止过拟合。接着通过两层 Dense 层进行全连接处理,最后使用 sigmoid 激活函数输出一个 0 到 1 之间的概率值,表示输入数据为真实数据的概率。该模型的输出值越接近 1,说明输入数据越接近真实数据;输出值越接近 0,说明输入数据越接近生成的假数据。
相关问题
下面代码在tensorflow中出现了init() missing 1 required positional argument: 'cell'报错: class Model(): def __init__(self): self.img_seq_shape=(10,128,128,3) self.img_shape=(128,128,3) self.train_img=dataset # self.test_img=dataset_T patch = int(128 / 2 ** 4) self.disc_patch = (patch, patch, 1) self.optimizer=tf.keras.optimizers.Adam(learning_rate=0.001) self.build_generator=self.build_generator() self.build_discriminator=self.build_discriminator() self.build_discriminator.compile(loss='binary_crossentropy', optimizer=self.optimizer, metrics=['accuracy']) self.build_generator.compile(loss='binary_crossentropy', optimizer=self.optimizer) img_seq_A = Input(shape=(10,128,128,3)) #输入图片 img_B = Input(shape=self.img_shape) #目标图片 fake_B = self.build_generator(img_seq_A) #生成的伪目标图片 self.build_discriminator.trainable = False valid = self.build_discriminator([img_seq_A, fake_B]) self.combined = tf.keras.models.Model([img_seq_A, img_B], [valid, fake_B]) self.combined.compile(loss=['binary_crossentropy', 'mse'], loss_weights=[1, 100], optimizer=self.optimizer,metrics=['accuracy']) def build_generator(self): def res_net(inputs, filters): x = inputs net = conv2d(x, filters // 2, (1, 1), 1) net = conv2d(net, filters, (3, 3), 1) net = net + x # net=tf.keras.layers.LeakyReLU(0.2)(net) return net def conv2d(inputs, filters, kernel_size, strides): x = tf.keras.layers.Conv2D(filters, kernel_size, strides, 'same')(inputs) x = tf.keras.layers.BatchNormalization()(x) x = tf.keras.layers.LeakyReLU(alpha=0.2)(x) return x d0 = tf.keras.layers.Input(shape=(10, 128, 128, 3)) out= ConvRNN2D(filters=32, kernel_size=3,padding='same')(d0) out=tf.keras.layers.Conv2D(3,1,1,'same')(out) return keras.Model(inputs=d0, outputs=out)
这个错误提示是因为在调用`build_discriminator`方法时,缺少了必要的参数`cell`。这表明您在`Model`类中定义了一个名为`build_discriminator`的方法,并且该方法需要一个名为`cell`的参数,但是在实例化`Model`对象时没有传递该参数。
您需要检查`build_discriminator`方法的定义,看看它是否确实需要`cell`参数,并且如果需要,您需要在实例化`Model`对象时传递该参数。
下面代码在tensorflow中出现了init() missing 1 required positional argument: 'cell'报错: class Model(): def init(self): self.img_seq_shape=(10,128,128,3) self.img_shape=(128,128,3) self.train_img=dataset # self.test_img=dataset_T patch = int(128 / 2 ** 4) self.disc_patch = (patch, patch, 1) self.optimizer=tf.keras.optimizers.Adam(learning_rate=0.001) self.build_generator=self.build_generator() self.build_discriminator=self.build_discriminator() self.build_discriminator.compile(loss='binary_crossentropy', optimizer=self.optimizer, metrics=['accuracy']) self.build_generator.compile(loss='binary_crossentropy', optimizer=self.optimizer) img_seq_A = Input(shape=(10,128,128,3)) #输入图片 img_B = Input(shape=self.img_shape) #目标图片 fake_B = self.build_generator(img_seq_A) #生成的伪目标图片 self.build_discriminator.trainable = False valid = self.build_discriminator([img_seq_A, fake_B]) self.combined = tf.keras.models.Model([img_seq_A, img_B], [valid, fake_B]) self.combined.compile(loss=['binary_crossentropy', 'mse'], loss_weights=[1, 100], optimizer=self.optimizer,metrics=['accuracy']) def build_generator(self): def res_net(inputs, filters): x = inputs net = conv2d(x, filters // 2, (1, 1), 1) net = conv2d(net, filters, (3, 3), 1) net = net + x # net=tf.keras.layers.LeakyReLU(0.2)(net) return net def conv2d(inputs, filters, kernel_size, strides): x = tf.keras.layers.Conv2D(filters, kernel_size, strides, 'same')(inputs) x = tf.keras.layers.BatchNormalization()(x) x = tf.keras.layers.LeakyReLU(alpha=0.2)(x) return x d0 = tf.keras.layers.Input(shape=(10, 128, 128, 3)) out= ConvRNN2D(filters=32, kernel_size=3,padding='same')(d0) out=tf.keras.layers.Conv2D(3,1,1,'same')(out) return keras.Model(inputs=d0, outputs=out) def build_discriminator(self): def d_layer(layer_input, filters, f_size=4, bn=True): d = tf.keras.layers.Conv2D(filters, kernel_size=f_size, strides=2, padding='same')(layer_input) if bn: d = tf.keras.layers.BatchNormalization(momentum=0.8)(d) d = tf.keras.layers.LeakyReLU(alpha=0.2)(d) return d img_A = tf.keras.layers.Input(shape=(10, 128, 128, 3)) img_B = tf.keras.layers.Input(shape=(128, 128, 3)) df = 32 lstm_out = ConvRNN2D(filters=df, kernel_size=4, padding="same")(img_A) lstm_out = tf.keras.layers.LeakyReLU(alpha=0.2)(lstm_out) combined_imgs = tf.keras.layers.Concatenate(axis=-1)([lstm_out, img_B]) d1 = d_layer(combined_imgs, df)#64 d2 = d_layer(d1, df * 2)#32 d3 = d_layer(d2, df * 4)#16 d4 = d_layer(d3, df * 8)#8 validity = tf.keras.layers.Conv2D(1, kernel_size=4, strides=1, padding='same')(d4) return tf.keras.Model([img_A, img_B], validity)
你在定义 Model 类时,没有传入参数 cell,但是在代码中使用了 ConvRNN2D 的实例化对象,这个对象需要一个 cell 参数。你需要在初始化函数中添加这个参数,如下所示:
```
class Model():
def __init__(self, cell):
self.img_seq_shape=(10,128,128,3)
self.img_shape=(128,128,3)
self.train_img=dataset
patch = int(128 / 2 ** 4)
self.disc_patch = (patch, patch, 1)
self.optimizer=tf.keras.optimizers.Adam(learning_rate=0.001)
self.build_generator=self.build_generator()
self.build_discriminator=self.build_discriminator(cell)
self.build_discriminator.compile(loss='binary_crossentropy', optimizer=self.optimizer, metrics=['accuracy'])
self.build_generator.compile(loss='binary_crossentropy', optimizer=self.optimizer)
img_seq_A = Input(shape=(10,128,128,3))
img_B = Input(shape=self.img_shape)
fake_B = self.build_generator(img_seq_A)
self.build_discriminator.trainable = False
valid = self.build_discriminator([img_seq_A, fake_B])
self.combined = tf.keras.models.Model([img_seq_A, img_B], [valid, fake_B])
self.combined.compile(loss=['binary_crossentropy', 'mse'], loss_weights=[1, 100], optimizer=self.optimizer,metrics=['accuracy'])
def build_generator(self):
def res_net(inputs, filters):
x = inputs
net = conv2d(x, filters // 2, (1, 1), 1)
net = conv2d(net, filters, (3, 3), 1)
net = net + x
return net
def conv2d(inputs, filters, kernel_size, strides):
x = tf.keras.layers.Conv2D(filters, kernel_size, strides, 'same')(inputs)
x = tf.keras.layers.BatchNormalization()(x)
x = tf.keras.layers.LeakyReLU(alpha=0.2)(x)
return x
d0 = tf.keras.layers.Input(shape=(10, 128, 128, 3))
out= ConvRNN2D(cell, filters=32, kernel_size=3,padding='same')(d0)
out=tf.keras.layers.Conv2D(3,1,1,'same')(out)
return keras.Model(inputs=d0, outputs=out)
def build_discriminator(self, cell):
def d_layer(layer_input, filters, f_size=4, bn=True):
d = tf.keras.layers.Conv2D(filters, kernel_size=f_size, strides=2, padding='same')(layer_input)
if bn:
d = tf.keras.layers.BatchNormalization(momentum=0.8)(d)
d = tf.keras.layers.LeakyReLU(alpha=0.2)(d)
return d
img_A = tf.keras.layers.Input(shape=(10, 128, 128, 3))
img_B = tf.keras.layers.Input(shape=(128, 128, 3))
df = 32
lstm_out = ConvRNN2D(cell, filters=df, kernel_size=4, padding="same")(img_A)
lstm_out = tf.keras.layers.LeakyReLU(alpha=0.2)(lstm_out)
combined_imgs = tf.keras.layers.Concatenate(axis=-1)([lstm_out, img_B])
d1 = d_layer(combined_imgs, df)#64
d2 = d_layer(d1, df * 2)#32
d3 = d_layer(d2, df * 4)#16
d4 = d_layer(d3, df * 8)#8
validity = tf.keras.layers.Conv2D(1, kernel_size=4, strides=1, padding='same')(d4)
return tf.keras.Model([img_A, img_B], validity)
```
阅读全文