辛普森公式matlab
时间: 2023-10-18 22:19:40 浏览: 116
辛普森公式是一种数值积分方法,可以用于求解定积分。在MATLAB中,可以使用`integral`函数来实现辛普森公式。例如,要求解函数`f(x) = x^2`在区间`[1, 2]`上的定积分,可以使用以下代码:
```
f = @(x) x.^2;
integral(f, 1, 2, 'Method', 'Simpson')
```
其中,`f`为要积分的函数句柄,`1`和`2`分别为积分区间的下限和上限,`'Method', 'Simpson'`表示使用辛普森公式进行积分。运行代码后,MATLAB会输出积分的近似值。
相关问题
辛普森公式matlab程序
以下是用 MATLAB 实现辛普森公式的程序:
```matlab
function [I] = simpson(f, a, b, n)
% f: 被积函数
% a, b: 积分上下限
% n: 区间数(偶数)
h = (b - a) / n;
x = a:h:b;
y = f(x);
I = h / 3 * (y(1) + 4 * sum(y(2:2:end-1)) + 2 * sum(y(3:2:end-2)) + y(end));
end
```
使用方法:
1. 将上述代码保存为 `simpson.m` 文件;
2. 将被积函数定义为 MATLAB 函数 `f`;
3. 在 MATLAB 命令窗口中输入
```
I = simpson(@f, a, b, n)
```
其中,`@f` 表示将函数 `f` 作为参数传递给 `simpson` 函数,`a` 和 `b` 分别为积分上下限,`n` 为区间数(偶数);
4. MATLAB 将计算出积分近似值 `I`。
注意:为了保证精度,区间数 `n` 应该足够大。
辛普森公式matlab代码
以下是辛普森公式的 MATLAB 代码:
function I = simpson(f, a, b, n)
% f: 被积函数
% a: 积分下限
% b: 积分上限
% n: 区间数,必须为偶数
h = (b - a) / n;
x = a:h:b;
y = f(x);
I = h / 3 * (y(1) + 4 * sum(y(2:2:end-1)) + 2 * sum(y(3:2:end-2)) + y(end));
end
希望对您有帮助!
阅读全文
相关推荐















