esp32与stm32串口通信代码

时间: 2023-03-25 09:04:28 浏览: 116
可以提供一些参考代码和资料,但具体实现还需要根据具体情况进行调整和修改。以下是一些参考资料: 1. ESP32与STM32串口通信的基本原理和方法:https://www.cnblogs.com/zhonghuasong/p/esp32-stm32-serial.html 2. ESP32与STM32串口通信的代码示例:https://github.com/espressif/esp-idf/tree/master/examples/peripherals/uart 3. ESP32与STM32串口通信的详细教程:https://www.jianshu.com/p/3c3c3d8b8d2b 希望对你有所帮助!
相关问题

帮我写个esp32与stm32串口通信代码

好的,我可以回答这个问题。以下是一个简单的 ESP32 和 STM32 串口通信代码示例: ESP32 代码: ``` #include <HardwareSerial.h> HardwareSerial Serial2(2); void setup() { Serial.begin(115200); Serial2.begin(115200, SERIAL_8N1, 16, 17); } void loop() { if (Serial2.available()) { Serial.write(Serial2.read()); } if (Serial.available()) { Serial2.write(Serial.read()); } } ``` STM32 代码: ``` #include <SoftwareSerial.h> SoftwareSerial Serial2(PA3, PA2); void setup() { Serial.begin(115200); Serial2.begin(115200); } void loop() { if (Serial2.available()) { Serial.write(Serial2.read()); } if (Serial.available()) { Serial2.write(Serial.read()); } } ``` 这个代码示例使用了 ESP32 的硬件串口和 STM32 的软件串口,可以实现两个板子之间的串口通信。

ESP32与STM32的串口通信

ESP32与STM32之间的串口通信可以通过以下步骤实现: 1. 首先,需要确定两个芯片之间的串口通信参数,如波特率、数据位、停止位等。确保两个芯片的串口参数匹配。 2. 在STM32中,使用HAL库的UART驱动程序初始化UART串口,并设置相应的串口参数。具体实现方法可以参考ST官方提供的HAL库文档。 3. 在ESP32中,使用Arduino IDE或者ESP-IDF SDK初始化UART串口,并设置相应的串口参数。具体实现方法可以参考Espressif官方提供的ESP-IDF SDK文档。 4. 在STM32中,使用HAL库的UART驱动程序发送数据到ESP32。具体实现方法可以参考ST官方提供的HAL库文档。 5. 在ESP32中,使用Arduino IDE或者ESP-IDF SDK的UART库接收STM32发送的数据。具体实现方法可以参考Espressif官方提供的ESP-IDF SDK文档。 需要注意的是,在进行串口通信时,需要考虑数据的传输速率和数据的完整性。如果数据传输速率过快,可能会导致数据的丢失或者错误。因此,在进行串口通信时,需要根据实际情况设置合适的波特率和数据位,以确保数据的传输完整性和正确性。

相关推荐

esp32与stm32串口通信的方法是将两者的串口进行连接。在esp32的代码中,可以使用Serial2来初始化和操作串口2,将接收到的数据通过Serial2.printf发送给stm32。同时,可以使用Serial来打印数据在电脑上进行调试。在stm32的代码中,可以使用相应的串口进行接收esp32发送的数据。通过这种方式,可以实现esp32与stm32之间的串口通信。\[1\]\[2\] #### 引用[.reference_title] - *1* [stm32和esp32通信实现蓝牙传输与手机通信](https://blog.csdn.net/leva345/article/details/121612825)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [ESP32 与 STM32 串口通信](https://blog.csdn.net/qq_67301179/article/details/128884211)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [STM32开发——串口通讯(第2篇)——WIFI(Esp8266)](https://blog.csdn.net/m0_67794575/article/details/131208021)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
### 回答1: 使用STM32和ESP32进行串口通信,需要使用UART接口,并配置好波特率、数据位、停止位和校验位。在STM32和ESP32上都需要使用UART_Read()和UART_Write()函数来读取和发送数据。 ### 回答2: ESP32和STM32是两种常用的嵌入式开发板,它们之间可以通过串口实现通信,下面是具体的串口通信写法。 首先,需要确定使用的串口通信协议,包括波特率、数据位、校验位、停止位等参数设置。 对于ESP32,使用Arduino语言进行开发时,可以使用Serial.begin(baudRate)函数初始化串口,并通过Serial.print()和Serial.read()函数实现发送和接收数据。 对于STM32,使用STM32CubeMX或者直接在Keil等IDE中进行开发时,可以通过库函数进行串口的初始化和使用。使用HAL库函数中的HAL_UART_Init()函数可以初始化串口配置,并通过HAL_UART_Transmit()和HAL_UART_Receive()函数实现发送和接收数据。 在进行串口通信时,需要确保两个开发板的串口参数设置一致,包括波特率、数据位、校验位、停止位等参数。 例如,如果ESP32的串口设置为115200波特率、8位数据位、无校验位、1个停止位,而STM32的串口设置也为115200波特率、8位数据位、无校验位、1个停止位,那么它们之间可以进行串口通信。 在代码编写上,ESP32可以使用Serial.print()函数发送数据,通过Serial.available()函数判断是否有数据接收,再使用Serial.read()函数读取接收到的数据。 STM32可以使用HAL_UART_Transmit()函数发送数据,通过HAL_UART_Receive()函数接收数据。在接收数据时,可以使用HAL_UART_Receive_IT()函数进行中断接收,或者使用轮询方式通过HAL_UART_Receive()函数进行接收。 总之,ESP32和STM32通过串口通信需要确保串口参数设置一致,并根据不同的开发板选用相应的库函数进行开发。通过发送和接收函数来实现双方之间的数据交换。 ### 回答3: ESP32和STM32之间的串口通信可以通过以下步骤实现: 1. 检查并确保ESP32和STM32的串口引脚连接正确,例如ESP32的TX引脚连接到STM32的RX引脚,ESP32的RX引脚连接到STM32的TX引脚。同时,确保两个设备的电源接地也连接在一起。 2. 在ESP32上,使用Arduino或MicroPython等开发工具,通过编程配置串口。首先,需要包含串口库(例如Serial或UART)。 3. 在ESP32上设置串口的波特率(如9600、115200等),该波特率应与STM32上的设置保持一致。 4. 使用串口库中的相应函数(例如Serial.begin()或UART.init())初始化串口。 5. 在ESP32上使用串口库中的函数(例如Serial.write()或UART.write())将要发送给STM32的数据写入串口发送缓冲区。 6. 在STM32上,使用CubeMX等开发工具为串口功能配置引脚和参数。 7. 在STM32上使用HAL库或者ST公司提供的标准库函数,通过相应的初始化函数(例如HAL_UART_Init())初始化串口。 8. 在STM32上使用HAL库或者标准库函数,通过相应的发送函数(例如HAL_UART_Transmit())将接收到的数据发送到串口。 9. 在STM32上使用串口接收中断,以便在接收到ESP32发送的数据时触发相应的处理函数。 10. 通过串口接收和发送函数,以及接收中断处理函数,在ESP32和STM32之间实现双向的串口通信。 需要注意的是,在编写串口通信的代码实现中,需要确保两个设备的波特率、数据位、停止位和校验位等参数设置相匹配。 以上是关于ESP32与STM32串口通信的基本步骤和注意事项的简要介绍。具体的代码实现和细节还需要根据你所使用的具体开发工具和编程语言来确定。
要实现ESP32CAM与STM32的串口通信,您可以按照以下步骤进行配置和编程: 1. 确保您已经准备好所需的硬件和开发环境,包括ESP-WROOM-32开发板和STM32F103C8T6单片机,以及Arduino IDE和keil MDK(5)开发环境。 2. 在ESP32的代码中,使用Serial2库初始化第二个串口,例如Serial2.begin(115200)。 3. 在ESP32的主循环中,使用Serial.available()检查串口0是否有数据可读取。 4. 如果有数据可读取,使用Serial.readString()读取串口0接收到的数据,并将其保存在一个变量中(例如readUART)。 5. 使用Serial2.printf()将读取到的数据发送给STM32,例如Serial2.printf("%s\r\n",readUART)。 6. 使用Serial.printf()将数据打印在电脑上进行调试,例如Serial.printf("%s\r\n",readUART)。 7. 在STM32的代码中,根据您的开发环境和需求使用相应的串口库进行初始化和通信。 请注意,以上代码仅为示例,您需要根据您的具体硬件和软件环境进行适当的调整和修改。另外,确保两个设备的波特率设置相同,例如115200。123 #### 引用[.reference_title] - *1* *2* *3* [ESP32 与 STM32 串口通信](https://blog.csdn.net/qq_67301179/article/details/128884211)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
以下是使用ESP8266和STM32的C语言代码实现串口通信: c #include <stdio.h> #include "stm32f4xx.h" #define ESP8266_BAUDRATE 9600 #define STM32_USART_BAUDRATE 115200 USART_InitTypeDef USART_InitStruct; void ESP8266_Init(void) { RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART2, ENABLE); GPIO_InitTypeDef GPIO_InitStruct; GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AF; GPIO_InitStruct.GPIO_OType = GPIO_OType_PP; GPIO_InitStruct.GPIO_Pin = GPIO_Pin_2; GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_NOPULL; GPIO_InitStruct.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOA, &GPIO_InitStruct); GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AF; GPIO_InitStruct.GPIO_OType = GPIO_OType_PP; GPIO_InitStruct.GPIO_Pin = GPIO_Pin_3; GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_NOPULL; GPIO_InitStruct.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOA, &GPIO_InitStruct); GPIO_PinAFConfig(GPIOA, GPIO_PinSource2, GPIO_AF_USART2); GPIO_PinAFConfig(GPIOA, GPIO_PinSource3, GPIO_AF_USART2); USART_InitStruct.USART_BaudRate = ESP8266_BAUDRATE; USART_InitStruct.USART_WordLength = USART_WordLength_8b; USART_InitStruct.USART_StopBits = USART_StopBits_1; USART_InitStruct.USART_Parity = USART_Parity_No; USART_InitStruct.USART_HardwareFlowControl = USART_HardwareFlowControl_None; USART_InitStruct.USART_Mode = USART_Mode_Tx | USART_Mode_Rx; USART_Init(USART2, &USART_InitStruct); USART_Cmd(USART2, ENABLE); } void STM32_USART_Init(void) { RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART3, ENABLE); GPIO_InitTypeDef GPIO_InitStruct; GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AF; GPIO_InitStruct.GPIO_OType = GPIO_OType_PP; GPIO_InitStruct.GPIO_Pin = GPIO_Pin_10; GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_NOPULL; GPIO_InitStruct.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOB, &GPIO_InitStruct); GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AF; GPIO_InitStruct.GPIO_OType = GPIO_OType_PP; GPIO_InitStruct.GPIO_Pin = GPIO_Pin_11; GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_NOPULL; GPIO_InitStruct.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOB, &GPIO_InitStruct); GPIO_PinAFConfig(GPIOB, GPIO_PinSource10, GPIO_AF_USART3); GPIO_PinAFConfig(GPIOB, GPIO_PinSource11, GPIO_AF_USART3); USART_InitStruct.USART_BaudRate = STM32_USART_BAUDRATE; USART_InitStruct.USART_WordLength = USART_WordLength_8b; USART_InitStruct.USART_StopBits = USART_StopBits_1; USART_InitStruct.USART_Parity = USART_Parity_No; USART_InitStruct.USART_HardwareFlowControl = USART_HardwareFlowControl_None; USART_InitStruct.USART_Mode = USART_Mode_Tx | USART_Mode_Rx; USART_Init(USART3, &USART_InitStruct); USART_Cmd(USART3, ENABLE); } void USART_SendChar(USART_TypeDef* USARTx, char ch) { while(USART_GetFlagStatus(USARTx, USART_FLAG_TXE) == RESET); USART_SendData(USARTx, ch); } void USART_SendString(USART_TypeDef* USARTx, const char *str) { while(*str) { USART_SendChar(USARTx, *str++); } } char USART_GetChar(USART_TypeDef* USARTx) { while(USART_GetFlagStatus(USARTx, USART_FLAG_RXNE) == RESET); return USART_ReceiveData(USARTx); } void USART_SendESPByte(uint8_t data) { USART_SendChar(USART2, (char)data); } uint8_t USART_GetESPByte(void) { return (uint8_t)USART_GetChar(USART2); } void USART_SendSTM32Byte(uint8_t data) { USART_SendChar(USART3, (char)data); } uint8_t USART_GetSTM32Byte(void) { return (uint8_t)USART_GetChar(USART3); } int main(void) { ESP8266_Init(); STM32_USART_Init(); while(1) { // STM32 -> ESP8266 uint8_t ch = USART_GetSTM32Byte(); USART_SendESPByte(ch); // ESP8266 -> STM32 ch = USART_GetESPByte(); USART_SendSTM32Byte(ch); } } 这个代码启用了stm32的USART3和ESP8266的USART2作为串口接口。它还实现了用于向ESP8266发送数据和从ESP8266接收数据的函数,以及用于向STM32发送数据和从STM32接收数据的函数。在主循环中,它无限循环,不停地从STM32读取一个字节,将其通过ESP8266发送出去,同时从ESP8266读取一个字节,并将其发送到STM32。
好的,我可以回答这个问题。以下是一个简单的示例代码: ESP32 代码: c #include "driver/uart.h" void app_main() { uart_config_t uart_config = { .baud_rate = 115200, .data_bits = UART_DATA_8_BITS, .parity = UART_PARITY_DISABLE, .stop_bits = UART_STOP_BITS_1, .flow_ctrl = UART_HW_FLOWCTRL_DISABLE }; uart_param_config(UART_NUM_1, &uart_config); uart_set_pin(UART_NUM_1, 17, 16, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE); uart_driver_install(UART_NUM_1, 1024, , , NULL, ); while (1) { uart_write_bytes(UART_NUM_1, "Hello STM32!\n", 14); vTaskDelay(100 / portTICK_RATE_MS); } } STM32 代码: c #include "stm32f10x.h" #include "stdio.h" void USART1_Init(void) { GPIO_InitTypeDef GPIO_InitStructure; USART_InitTypeDef USART_InitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_USART1, ENABLE); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOA, &GPIO_InitStructure); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING; GPIO_Init(GPIOA, &GPIO_InitStructure); USART_InitStructure.USART_BaudRate = 115200; USART_InitStructure.USART_WordLength = USART_WordLength_8b; USART_InitStructure.USART_StopBits = USART_StopBits_1; USART_InitStructure.USART_Parity = USART_Parity_No; USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None; USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx; USART_Init(USART1, &USART_InitStructure); USART_Cmd(USART1, ENABLE); } int main(void) { USART1_Init(); while (1) { if (USART_GetFlagStatus(USART1, USART_FLAG_RXNE) == SET) { char ch = USART_ReceiveData(USART1); printf("Received: %c\n", ch); } } } 这两个代码可以实现 ESP32 和 STM32 之间的串口通信。你可以根据自己的需求进行修改。

最新推荐

基于python的宠物商店。python+django+vue搭建的宠物商店-毕业设计-课程设计.zip

基于python的宠物商店。python+django+vue搭建的宠物商店-毕业设计-课程设计

基于Matlab的图像去雾(多方法对比,PSNR,信息熵,GUI界面).zip

基于Matlab的图像去雾(多方法对比,PSNR,信息熵,GUI界面).zip

GMW 3600 通用供应商分析 开发 验证过程任务和可交付成果.pdf

GMW 3600 通用供应商分析 开发 验证过程任务和可交付成果.pdf

python租房网站,python+django+vue开发的租房管理系统,房屋出租管理系统-毕业设计-课程设计.zip

python租房网站,python+django+vue开发的租房管理系统,房屋出租管理系统-毕业设计-课程设计.zip

MySQL面试题汇总.zip

mysql

代码随想录最新第三版-最强八股文

这份PDF就是最强⼋股⽂! 1. C++ C++基础、C++ STL、C++泛型编程、C++11新特性、《Effective STL》 2. Java Java基础、Java内存模型、Java面向对象、Java集合体系、接口、Lambda表达式、类加载机制、内部类、代理类、Java并发、JVM、Java后端编译、Spring 3. Go defer底层原理、goroutine、select实现机制 4. 算法学习 数组、链表、回溯算法、贪心算法、动态规划、二叉树、排序算法、数据结构 5. 计算机基础 操作系统、数据库、计算机网络、设计模式、Linux、计算机系统 6. 前端学习 浏览器、JavaScript、CSS、HTML、React、VUE 7. 面经分享 字节、美团Java面、百度、京东、暑期实习...... 8. 编程常识 9. 问答精华 10.总结与经验分享 ......

无监督人脸特征传输与检索

1检索样式:无监督人脸特征传输与检索闽金虫1号mchong6@illinois.edu朱文生wschu@google.comAbhishek Kumar2abhishk@google.com大卫·福赛斯1daf@illinois.edu1伊利诺伊大学香槟分校2谷歌研究源源源参考输出参考输出参考输出查询检索到的图像(a) 眼睛/鼻子/嘴(b)毛发转移(c)姿势转移(d)面部特征检索图1:我们提出了一种无监督的方法来将局部面部外观从真实参考图像转移到真实源图像,例如,(a)眼睛、鼻子和嘴。与最先进的[10]相比,我们的方法能够实现照片般逼真的传输。(b) 头发和(c)姿势,并且可以根据不同的面部特征自然地扩展用于(d)语义检索摘要我们提出检索风格(RIS),一个无监督的框架,面部特征转移和检索的真实图像。最近的工作显示了通过利用StyleGAN潜在空间的解纠缠特性来转移局部面部特征的能力。RIS在以下方面改进了现有技术:1)引入

HALCON打散连通域

### 回答1: 要打散连通域,可以使用 HALCON 中的 `connection` 和 `disassemble_region` 函数。首先,使用 `connection` 函数将图像中的连通域连接起来,然后使用 `disassemble_region` 函数将连接后的连通域分离成单独的区域。下面是一个示例代码: ``` read_image(Image, 'example.png') Threshold := 128 Binary := (Image > Threshold) ConnectedRegions := connection(Binary) NumRegions :=

数据结构1800试题.pdf

你还在苦苦寻找数据结构的题目吗?这里刚刚上传了一份数据结构共1800道试题,轻松解决期末挂科的难题。不信?你下载看看,这里是纯题目,你下载了再来私信我答案。按数据结构教材分章节,每一章节都有选择题、或有判断题、填空题、算法设计题及应用题,题型丰富多样,共五种类型题目。本学期已过去一半,相信你数据结构叶已经学得差不多了,是时候拿题来练练手了,如果你考研,更需要这份1800道题来巩固自己的基础及攻克重点难点。现在下载,不早不晚,越往后拖,越到后面,你身边的人就越卷,甚至卷得达到你无法想象的程度。我也是曾经遇到过这样的人,学习,练题,就要趁现在,不然到时你都不知道要刷数据结构题好还是高数、工数、大英,或是算法题?学完理论要及时巩固知识内容才是王道!记住!!!下载了来要答案(v:zywcv1220)。

无监督身份再识别中的判别表示学习算法及领域适应技术的研究与应用

8526基于判别表示学习的无监督身份再识别Takashi Isobe1,2,Dong Li1,Lu Tian1,Weihua Chen3,Yi Shan1,ShengjinWang2*1 Xilinx Inc.,中国北京2清华大学3阿里巴巴集团{dongl,lutian,yishan}@xilinx.comjbj18@mails.tsinghua.edu.cnwgsg@tsinghua.edu.cnkugang. alibaba-inc.com摘要在这项工作中,我们解决的问题,无监督域适应的人重新ID注释可用于源域,但不为目标。以前的方法通常遵循两阶段优化管道,其中网络首先在源上进行预训练,然后使用通过特征聚类创建的伪标签在目标上进行微调。这种方法存在两个主要局限性。(1)标签噪声可能阻碍用于识别目标类别的区分特征的学习。(2)领域差距可能会阻碍知识从源到目标的转移。我们提出了三种技术方案来缓解(一)(b)第(1)款(c)第(1)款这些问题首先,我们提出了一个集群明智的对比学习算法(CCL)的特征学习和集群精炼的迭代优�