super(TimeBlock, self).__init__() self.conv1 = nn.Conv2d(in_channels, out_channels, (1, kernel_size)) self.conv2 = nn.Conv2d(in_channels, out_channels, (1, kernel_size)) self.conv3 = nn.Conv2d(in_channels, out_channels, (1, kernel_size))解释一下
时间: 2023-03-15 08:43:47 浏览: 176
这里使用的是Python类中的构造函数,其中TimeBlock是自定义类,self是实例本身的引用,然后定义了三个卷积层,每个层的in_channels、out_channels和kernel_size都不一样,这样就可以构建出一个有效的网络结构。
相关问题
class SelfAttention(nn.Module): def __init__(self,in_c,out_c,fm_sz,pos_bias = False): super(SelfAttention,self).__init__() self.w_q = nn.Conv2d(in_channels = in_c,out_channels = out_c,kernel_size = 1) self.w_k = nn.Conv2d(in_channels = in_c,out_channels = out_c,kernel_size = 1) self.w_v = nn.Conv2d(in_channels = in_c,out_channels = out_c,kernel_size = 1) self.pos_code = self.__getPosCode(fm_sz,out_c) self.softmax = nn.Softmax(dim = 2) self.pos_bias = pos_bias 改写为twensorflow形式
可以将这段PyTorch代码改写为如下的TensorFlow代码:
```python
import tensorflow as tf
from tensorflow import keras
class SelfAttention(keras.layers.Layer):
def __init__(self, in_c, out_c, fm_sz, pos_bias=False):
super(SelfAttention, self).__init__()
self.w_q = keras.layers.Conv2D(filters=out_c, kernel_size=1, input_shape=(None, None, in_c))
self.w_k = keras.layers.Conv2D(filters=out_c, kernel_size=1, input_shape=(None, None, in_c))
self.w_v = keras.layers.Conv2D(filters=out_c, kernel_size=1, input_shape=(None, None, in_c))
self.pos_code = self.__getPosCode(fm_sz, out_c)
self.softmax = keras.layers.Softmax(axis=2)
self.pos_bias = pos_bias
def __getPosCode(self, fm_sz, out_c):
x = []
for i in range(fm_sz):
x.append([np.sin, np.cos][i % 2](1 / (10000 ** (i // 2 / fm_sz))))
x = tf.convert_to_tensor([x], dtype=tf.float32)
return tf.concat([(x + tf.transpose(x)).unsqueeze(0) for i in range(out_c)], axis=0)
def call(self, x):
q, k, v = self.w_q(x), self.w_k(x), self.w_v(x)
pos_code = tf.concat([self.pos_code.unsqueeze(0) for i in range(x.shape[0])], axis=0)
if self.pos_bias:
att_map = tf.matmul(q, tf.transpose(k, perm=[0, 1, 3, 2])) + pos_code
else:
att_map = tf.matmul(q, tf.transpose(k, perm=[0, 1, 3, 2])) + tf.matmul(q, tf.transpose(pos_code, perm=[0, 1, 3, 2]))
am_shape = att_map.shape
att_map = self.softmax(tf.reshape(att_map, [am_shape[0], am_shape[1], am_shape[2] * am_shape[3]]))
att_map = tf.reshape(att_map, am_shape)
return att_map * v
```
需要注意的是,这里的代码只是一种可能的TensorFlow实现方式,具体还需要根据实际情况进行微调。
super().__init__() bc = base_channels if squeeze_excitation: conv_block = WithSE(conv_block) self.init = nn.Conv2d(input_channels, bc, 1) self.output_channels = output_channels是什么意思
在这段代码中,`super().__init__()`是调用父类的初始化方法,用于确保父类的初始化代码得以执行。
`bc = base_channels`是将参数`base_channels`的值赋给变量`bc`,这样后续可以使用`bc`来表示基础通道数。
`self.init = nn.Conv2d(input_channels, bc, 1)`是创建了一个`nn.Conv2d`的实例,并将其赋值给成员变量`self.init`。这个卷积层的作用是将输入通道数`input_channels`转换为基础通道数`bc`。
`self.output_channels = output_channels`是将参数`output_channels`的值赋给成员变量`self.output_channels`。这个成员变量用于表示输出通道数。在模型的其他部分可能会使用这个值进行后续操作,比如决定网络的最终输出通道数或者用于计算损失函数等。
阅读全文