解释这段代码def __init__(self): super(Discriminator, self).__init__() self.label_embedding = nn.Embedding(opt.n_classes, opt.n_classes) self.model = nn.Sequential(nn.Linear((opt.n_classes + int(np.prod(img_shape))), 512), nn.LeakyReLU(0.2), nn.Linear(512, 512), nn.Dropout(0.4), nn.LeakyReLU(0.2), nn.Linear(512, 512), nn.Dropout(0.4), nn.LeakyReLU(0.2), # TODO: 添加最后一个线性层,最终输出为一个实数 nn.Linear(512, 1) )
时间: 2024-02-10 18:07:41 浏览: 87
这是一个用于生成对抗网络(GAN)中的判别器(Discriminator)的初始化函数。GAN是一种机器学习模型,由一个生成器(Generator)和一个判别器组成,旨在生成与真实数据相似的数据。在GAN中,判别器负责判断输入的数据(真实数据或生成器生成的数据)是否为真实数据。
在这个初始化函数中,首先调用了父类的初始化函数 `super(Discriminator, self).__init__()`,之后定义了一个大小为 `opt.n_classes` 的嵌入层 `self.label_embedding`,用于将标签信息嵌入到模型中。
接下来,使用了一个包含多个线性层和激活函数的序列模型 `nn.Sequential()`,其中第一个线性层的输入大小为 `(opt.n_classes + int(np.prod(img_shape)))`,其中 `opt.n_classes` 表示标签数量,`np.prod(img_shape)` 表示真实数据的形状。后面的线性层和激活函数用于提取和学习输入数据的特征。
最后一个线性层的输出大小为1,用于输出一个实数,表示输入的数据是否为真实数据。此处的 TODO 提示需要添加一个最后一个线性层,是因为在这个代码段中,最后一个线性层还没有被添加。
相关问题
class Hypergraph_Infomax(nn.Module): def __init__(self): super(Hypergraph_Infomax, self).__init__() self.Hypergraph = Hypergraph() self.readout = AvgReadout() self.sigm = nn.Sigmoid() self.disc = Discriminator() def forward(self, eb_pos, eb_neg): h_pos = self.Hypergraph(eb_pos) c = self.readout(h_pos) score = self.sigm(c) h_neg = self.Hypergraph(eb_neg) ret = self.disc(score, h_pos, h_neg) return h_pos, ret
这段代码实现了一个名为Hypergraph_Infomax的神经网络模型,用于对超图进行信息最大化学习。该模型由三个子模块组成:
- Hypergraph:超图编码器,用于将输入的边集(eb_pos和eb_neg)编码为超图。
- AvgReadout:超图池化操作,用于将超图中的节点信息汇总成一个固定长度的向量。
- Discriminator:判别器,用于判断输入的超图是否为真实超图(eb_pos)。
在forward函数中,首先用Hypergraph将eb_pos和eb_neg分别编码为超图h_pos和h_neg,然后通过AvgReadout将h_pos池化为一个向量c,并使用Sigmoid函数将c映射到[0, 1]之间得到score。最后,将score、h_pos和h_neg输入到Discriminator中,得到ret作为模型的输出。
运行以下Python代码:import torchimport torch.nn as nnimport torch.optim as optimfrom torchvision import datasets, transformsfrom torch.utils.data import DataLoaderfrom torch.autograd import Variableclass Generator(nn.Module): def __init__(self, input_dim, output_dim, num_filters): super(Generator, self).__init__() self.input_dim = input_dim self.output_dim = output_dim self.num_filters = num_filters self.net = nn.Sequential( nn.Linear(input_dim, num_filters), nn.ReLU(), nn.Linear(num_filters, num_filters*2), nn.ReLU(), nn.Linear(num_filters*2, num_filters*4), nn.ReLU(), nn.Linear(num_filters*4, output_dim), nn.Tanh() ) def forward(self, x): x = self.net(x) return xclass Discriminator(nn.Module): def __init__(self, input_dim, num_filters): super(Discriminator, self).__init__() self.input_dim = input_dim self.num_filters = num_filters self.net = nn.Sequential( nn.Linear(input_dim, num_filters*4), nn.LeakyReLU(0.2), nn.Linear(num_filters*4, num_filters*2), nn.LeakyReLU(0.2), nn.Linear(num_filters*2, num_filters), nn.LeakyReLU(0.2), nn.Linear(num_filters, 1), nn.Sigmoid() ) def forward(self, x): x = self.net(x) return xclass ConditionalGAN(object): def __init__(self, input_dim, output_dim, num_filters, learning_rate): self.generator = Generator(input_dim, output_dim, num_filters) self.discriminator = Discriminator(input_dim+1, num_filters) self.optimizer_G = optim.Adam(self.generator.parameters(), lr=learning_rate) self.optimizer_D = optim.Adam(self.discriminator.parameters(), lr=learning_rate) def train(self, data_loader, num_epochs): for epoch in range(num_epochs): for i, (inputs, labels) in enumerate(data_loader): # Train discriminator with real data real_inputs = Variable(inputs) real_labels = Variable(labels) real_labels = real_labels.view(real_labels.size(0), 1) real_inputs = torch.cat((real_inputs, real_labels), 1) real_outputs = self.discriminator(real_inputs) real_loss = nn.BCELoss()(real_outputs, torch.ones(real_outputs.size())) # Train discriminator with fake data noise = Variable(torch.randn(inputs.size(0), self.generator.input_dim)) fake_labels = Variable(torch.LongTensor(inputs.size(0)).random_(0, 10)) fake_labels = fake_labels.view(fake_labels.size(0), 1) fake_inputs = self.generator(torch.cat((noise, fake_labels.float()), 1)) fake_inputs = torch.cat((fake_inputs, fake_labels), 1) fake_outputs = self.discriminator(fake_inputs) fake_loss = nn.BCELoss()(fake_outputs, torch.zeros(fake_outputs.size())) # Backpropagate and update weights for discriminator discriminator_loss = real_loss + fake_loss self.discriminator.zero_grad() discriminator_loss.backward() self.optimizer_D.step() # Train generator noise = Variable(torch.randn(inputs.size(0), self.generator.input_dim)) fake_labels = Variable(torch.LongTensor(inputs.size(0)).random_(0,
这是一个用 PyTorch 实现的条件 GAN,以下是代码的简要解释:
首先引入 PyTorch 相关的库和模块:
```
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
from torch.autograd import Variable
```
接下来定义生成器(Generator)和判别器(Discriminator)的类:
```
class Generator(nn.Module):
def __init__(self, input_dim, output_dim, num_filters):
super(Generator, self).__init__()
self.input_dim = input_dim
self.output_dim = output_dim
self.num_filters = num_filters
self.net = nn.Sequential(
nn.Linear(input_dim, num_filters),
nn.ReLU(),
nn.Linear(num_filters, num_filters*2),
nn.ReLU(),
nn.Linear(num_filters*2, num_filters*4),
nn.ReLU(),
nn.Linear(num_filters*4, output_dim),
nn.Tanh()
)
def forward(self, x):
x = self.net(x)
return x
class Discriminator(nn.Module):
def __init__(self, input_dim, num_filters):
super(Discriminator, self).__init__()
self.input_dim = input_dim
self.num_filters = num_filters
self.net = nn.Sequential(
nn.Linear(input_dim, num_filters*4),
nn.LeakyReLU(0.2),
nn.Linear(num_filters*4, num_filters*2),
nn.LeakyReLU(0.2),
nn.Linear(num_filters*2, num_filters),
nn.LeakyReLU(0.2),
nn.Linear(num_filters, 1),
nn.Sigmoid()
)
def forward(self, x):
x = self.net(x)
return x
```
其中,生成器接受输入维度 input_dim、输出维度 output_dim 和 num_filters 个特征,采用线性层和激活函数构建多层神经网络。判别器接受输入维度 input_dim 和 num_filters 个特征,同样采用线性层和激活函数构建多层神经网络。
最后定义条件 GAN 的类 ConditionalGAN,该类包括生成器、判别器和优化器,以及 train 方法进行训练:
```
class ConditionalGAN(object):
def __init__(self, input_dim, output_dim, num_filters, learning_rate):
self.generator = Generator(input_dim, output_dim, num_filters)
self.discriminator = Discriminator(input_dim+1, num_filters)
self.optimizer_G = optim.Adam(self.generator.parameters(), lr=learning_rate)
self.optimizer_D = optim.Adam(self.discriminator.parameters(), lr=learning_rate)
def train(self, data_loader, num_epochs):
for epoch in range(num_epochs):
for i, (inputs, labels) in enumerate(data_loader):
...
```
其中,ConditionalGAN 类接受输入维度 input_dim、输出维度 output_dim、特征数 num_filters 和学习率 learning_rate。train 方法则接受数据加载器 data_loader 和训练轮数 num_epochs,用于训练模型。
阅读全文