vs2010+mfc串口助手

时间: 2023-06-08 13:01:47 浏览: 139
VS2010 MFC串口助手是一款基于Microsoft Foundation Classes(MFC)开发的串口通讯工具,适用于Windows操作系统。它可以实现串口的开启、关闭、设置参数、发送数据、接收数据等功能,同时还支持ASCII码和16进制数据的显示和发送。 VS2010 MFC串口助手提供了简单易用的用户界面,用户只需设置好串口参数后即可进行通讯操作,对于串口开发初学者来说非常友好。此外,VS2010 MFC串口助手还提供了多种通讯方式,如单向通讯、循环通讯、定时发送等,方便用户根据实际需求进行通讯。 VS2010 MFC串口助手的实现原理主要是通过调用Windows API函数实现串口的开启和通讯操作。它支持的串口参数包括波特率、数据位、校验位、停止位等,同时还支持设置缓冲区大小,以便处理大量数据时的效率问题。 总的来说,VS2010 MFC串口助手是一款适合初学者使用的串口工具,它的优点在于简单易用、支持多种通讯方式、具有完善的串口设置功能。但是需要注意的是,由于它是基于MFC开发的,所以在最新的 Windows 系统上可能存在兼容性问题。
相关问题

vs mfc简单写串口助手

下面是一个简单的基于 MFC 的串口助手示例代码,可以帮助你开始编写: 1. 创建 MFC 对话框应用程序项目。 2. 在资源视图中双击 IDD_DIALOG1,将对话框设计器打开,将一个编辑框和一个按钮控件拖放到对话框中。 3. 在 ClassView 中添加一个类,命名为 CSerialPort。 4. 将以下代码添加到 CSerialPort.h 文件中: ```cpp #pragma once #include <afxwin.h> #include <afxext.h> #include <afxdisp.h> #include <afxdtctl.h> #include <afxcmn.h> #include <afxsock.h> #include <afxtempl.h> #include <atlimage.h> class CSerialPort { public: CSerialPort(); virtual ~CSerialPort(); BOOL Open(UINT nPort, UINT nBaud); BOOL Close(); int ReadData(void *buffer, int limit); int WriteData(const void *buffer, int count); protected: HANDLE m_hComm; }; ``` 5. 在 CSerialPort.cpp 文件中实现 CSerialPort 类的方法: ```cpp #include "stdafx.h" #include "CSerialPort.h" CSerialPort::CSerialPort() : m_hComm(INVALID_HANDLE_VALUE) { } CSerialPort::~CSerialPort() { Close(); } BOOL CSerialPort::Open(UINT nPort, UINT nBaud) { CString sPort; sPort.Format(_T("\\\\.\\COM%d"), nPort); m_hComm = CreateFile(sPort, GENERIC_READ | GENERIC_WRITE, 0, NULL, OPEN_EXISTING, 0, NULL); if (m_hComm == INVALID_HANDLE_VALUE) return FALSE; DCB dcb; GetCommState(m_hComm, &dcb); dcb.BaudRate = nBaud; dcb.ByteSize = 8; dcb.Parity = NOPARITY; dcb.StopBits = ONESTOPBIT; SetCommState(m_hComm, &dcb); COMMTIMEOUTS timeouts; timeouts.ReadIntervalTimeout = 0; timeouts.ReadTotalTimeoutMultiplier = 0; timeouts.ReadTotalTimeoutConstant = 0; timeouts.WriteTotalTimeoutMultiplier = 0; timeouts.WriteTotalTimeoutConstant = 0; SetCommTimeouts(m_hComm, &timeouts); return TRUE; } BOOL CSerialPort::Close() { if (m_hComm == INVALID_HANDLE_VALUE) return FALSE; CloseHandle(m_hComm); m_hComm = INVALID_HANDLE_VALUE; return TRUE; } int CSerialPort::ReadData(void *buffer, int limit) { if (m_hComm == INVALID_HANDLE_VALUE) return -1; DWORD dwBytesRead = 0; ReadFile(m_hComm, buffer, limit, &dwBytesRead, NULL); return dwBytesRead; } int CSerialPort::WriteData(const void *buffer, int count) { if (m_hComm == INVALID_HANDLE_VALUE) return -1; DWORD dwBytesWritten = 0; WriteFile(m_hComm, buffer, count, &dwBytesWritten, NULL); return dwBytesWritten; } ``` 6. 在对话框类中添加一个成员变量 CSerialPort m_SerialPort; 以及一个响应按钮点击事件的函数 OnBnClickedButton1()。 7. 在 OnBnClickedButton1() 函数中添加以下代码: ```cpp void CSerialPortHelperDlg::OnBnClickedButton1() { UpdateData(); if (m_SerialPort.Open(m_nPort, m_nBaud)) { m_SerialPort.WriteData(m_sSend, m_sSend.GetLength()); char buffer[1024] = { 0 }; int len = m_SerialPort.ReadData(buffer, 1024); if (len > 0) { CString sRecv(buffer, len); m_sRecv = sRecv; UpdateData(FALSE); } m_SerialPort.Close(); } } ``` 8. 在对话框类中添加以下变量: ```cpp UINT m_nPort; UINT m_nBaud; CString m_sSend; CString m_sRecv; ``` 9. 在对话框设计器中,双击按钮控件,将 OnBnClickedButton1() 函数关联到按钮的点击事件上。 现在你可以编译并运行代码,在串口助手中输入要发送的数据,点击按钮将其发送到串口,并等待串口返回数据。串口返回的数据将显示在窗口中。

mfc串口助手上位机源码

### 回答1: MFC串口助手上位机源码是一种用于控制串口操作的应用程序源码。MFC(Microsoft Foundation Class)是一种用于开发Windows应用程序的类库,串口助手上位机源码使用MFC框架实现了串口通信的功能。 首先,该源码基于MFC中的CSerialPort类来管理串口连接。它通过调用一系列函数来打开、关闭、配置串口,并提供了发送和接收数据的功能。这样,用户可以通过该上位机源码实现与串口设备的通信。 其次,该上位机源码提供了图形化界面,使用者可以通过界面设置串口的参数,如波特率、数据位、停止位等。用户还可以在程序界面上输入要发送的数据,并通过点击发送按钮将数据发送到串口设备。同时,该上位机源码显示接收到的数据,并提供清除接收框的功能。 此外,该源码还提供了一些额外的功能,如保存接收到的数据到文件中,以便之后的数据分析。用户还可以通过设置定时器来定时发送数据,以实现与串口设备的交互操作。 总之,MFC串口助手上位机源码是一种基于MFC框架的应用程序源码,通过该源码实现了对串口设备的控制、数据的发送和接收,并提供了图形化界面和一些额外功能。用户可以根据自己的需求进行修改和拓展。 ### 回答2: MFC串口助手上位机的源码实际上是基于MFC(Microsoft Foundation Class)库开发的串口通信程序。该程序主要用于在计算机上与外部设备进行串口通信,实现数据的接收和发送。 MFC串口助手上位机的源码通常包含以下几个主要部分: 1. 界面设计:通过MFC的图形界面设计工具,设计程序的主窗口和其他相关界面,包括显示接收到的数据、发送数据的输入框、串口配置参数等。 2. 串口通信功能:使用MFC提供的串口通信类,如CSerialPort,实现串口的打开、关闭、配置、发送和接收等功能。可以通过设定波特率、数据位、校验位和停止位等参数,与外部设备进行正常的串口通信。 3. 数据处理:根据实际需求,对接收到的数据进行解析和处理。例如,可以将接收到的数据显示在界面上,或者根据特定的数据格式进行解析,并进行相应的操作。 4. 扩展功能:根据实际需求,可以添加其他的功能,如数据保存、数据分析、数据转发等。这些功能可以通过界面上的按钮或菜单实现,或者通过添加相应的事件和函数实现。 MFC串口助手上位机的源码可以作为一个起点,根据具体需求进行修改和扩展。可以根据实际情况,适当调整界面设计,增加新的功能模块,甚至实现与数据库或其他外部设备的交互等。 总之,MFC串口助手上位机的源码主要是为了提供一个基于MFC库的串口通信程序,方便用户与外部设备进行数据的交互和通信。使用该源码,可以快速构建并定制一个符合自己需求的串口通信应用程序。 ### 回答3: MFC串口助手上位机源码是一种用于控制串口设备的程序源代码。MFC(Microsoft Foundation Class)是微软公司的一种基于Windows的程序框架,用于开发Windows应用程序。上位机源码通常用于串口调试和控制领域,可以通过串口与下位机(嵌入式系统、传感器等)进行通信。 MFC串口助手上位机源码主要包括以下功能: 1. 串口参数设置:通过界面输入或下拉框选择,设置串口的波特率、数据位、停止位、校验位等参数。 2. 串口开关:通过按钮或复选框控制串口的打开和关闭,确保与下位机的连接状态。 3. 数据发送与接收:提供文本输入框或组合框,用户可以输入要发送的数据包或选择预定义命令。发送数据时,调用串口通信API将数据传输到下位机;接收数据时,监听并处理下位机返回的数据。 4. 数据显示:在用户界面上以文本窗口的形式实时显示发送和接收的数据,便于用户查看和分析通信过程。 5. 数据格式转换:对接收到的数据进行解析和转换,将原始数据转换为可读性高的格式,如16进制、ASCII码等。 6. 数据保存:提供文件保存按钮,允许用户将发送和接收的数据保存到本地计算机,用于后续分析和记录。 7. 快捷命令:通过添加快捷命令列表,用户可以保存常用命令,方便快速发送。 通过编写MFC串口助手上位机源码,我们可以实现对串口设备的简单操作和控制,方便用户进行串口通信调试和数据收发。该源码可以根据具体需求进行定制和扩展,以满足不同应用场景下的串口通信需求。
阅读全文

相关推荐

最新推荐

recommend-type

串口调试助手源程序编程详细过程.doc

在串口调试助手的开发过程中,使用VC++6.0和MFC库是常见的选择,因为它们提供了方便的工具和框架来实现串口通信。以下是对编程详细过程的详细解释: 1. **建立项目**: 首先,我们需要在VC++6.0环境中创建一个基于...
recommend-type

VC++串口调试VC++串口调试

本篇文章将详细讲解如何使用VC++6.0创建一个串口调试助手,该过程主要包括以下几个步骤: 1. **建立项目**:首先,我们需要启动VC++6.0并创建一个新的基于对话框的MFC应用程序,例如名为SCommTest。这样做是为了...
recommend-type

串口与界面设计代码文档

然后在VS2005/VS2010环境中,新建MFC对话框应用程序,插入MSCOMM控件,设置控件属性,如端口号、缓冲区大小、波特率等。同时,为控件添加变量和消息响应函数,如OnComm,以便处理串口事件。在初始化对话框时配置串口...
recommend-type

VC++使用comm实现串口通信

通过以上步骤,你就可以创建一个基本的串口调试助手,能够收发串口数据并进行简单的监控。这个程序对于初学者来说是一个很好的实践项目,能帮助理解串口通信的基本原理和VC++中控件的使用方法。记住,串口通信涉及到...
recommend-type

【数据驱动】复杂网络的数据驱动控制附Matlab代码.rar

1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
recommend-type

深入浅出:自定义 Grunt 任务的实践指南

资源摘要信息:"Grunt 是一个基于 Node.js 的自动化任务运行器,它极大地简化了重复性任务的管理。在前端开发中,Grunt 经常用于压缩文件、运行测试、编译 LESS/SASS、优化图片等。本文档提供了自定义 Grunt 任务的示例,对于希望深入掌握 Grunt 或者已经开始使用 Grunt 但需要扩展其功能的开发者来说,这些示例非常有帮助。" ### 知识点详细说明 #### 1. 创建和加载任务 在 Grunt 中,任务是由 JavaScript 对象表示的配置块,可以包含任务名称、操作和选项。每个任务可以通过 `grunt.registerTask(taskName, [description, ] fn)` 来注册。例如,一个简单的任务可以这样定义: ```javascript grunt.registerTask('example', function() { grunt.log.writeln('This is an example task.'); }); ``` 加载外部任务,可以通过 `grunt.loadNpmTasks('grunt-contrib-jshint')` 来实现,这通常用在安装了新的插件后。 #### 2. 访问 CLI 选项 Grunt 支持命令行接口(CLI)选项。在任务中,可以通过 `grunt.option('option')` 来访问命令行传递的选项。 ```javascript grunt.registerTask('printOptions', function() { grunt.log.writeln('The watch option is ' + grunt.option('watch')); }); ``` #### 3. 访问和修改配置选项 Grunt 的配置存储在 `grunt.config` 对象中。可以通过 `grunt.config.get('configName')` 获取配置值,通过 `grunt.config.set('configName', value)` 设置配置值。 ```javascript grunt.registerTask('printConfig', function() { grunt.log.writeln('The banner config is ' + grunt.config.get('banner')); }); ``` #### 4. 使用 Grunt 日志 Grunt 提供了一套日志系统,可以输出不同级别的信息。`grunt.log` 提供了 `writeln`、`write`、`ok`、`error`、`warn` 等方法。 ```javascript grunt.registerTask('logExample', function() { grunt.log.writeln('This is a log example.'); grunt.log.ok('This is OK.'); }); ``` #### 5. 使用目标 Grunt 的配置可以包含多个目标(targets),这样可以为不同的环境或文件设置不同的任务配置。在任务函数中,可以通过 `this.args` 获取当前目标的名称。 ```javascript grunt.initConfig({ jshint: { options: { curly: true, }, files: ['Gruntfile.js'], my_target: { options: { eqeqeq: true, }, }, }, }); grunt.registerTask('showTarget', function() { grunt.log.writeln('Current target is: ' + this.args[0]); }); ``` #### 6. 异步任务 Grunt 支持异步任务,这对于处理文件读写或网络请求等异步操作非常重要。异步任务可以通过传递一个回调函数给任务函数来实现。若任务是一个异步操作,必须调用回调函数以告知 Grunt 任务何时完成。 ```javascript grunt.registerTask('asyncTask', function() { var done = this.async(); // 必须调用 this.async() 以允许异步任务。 setTimeout(function() { grunt.log.writeln('This is an async task.'); done(); // 任务完成时调用 done()。 }, 1000); }); ``` ### Grunt插件和Gruntfile配置 Grunt 的强大之处在于其插件生态系统。通过 `npm` 安装插件后,需要在 `Gruntfile.js` 中配置这些插件,才能在任务中使用它们。Gruntfile 通常包括任务注册、任务配置、加载外部任务三大部分。 - 任务注册:使用 `grunt.registerTask` 方法。 - 任务配置:使用 `grunt.initConfig` 方法。 - 加载外部任务:使用 `grunt.loadNpmTasks` 方法。 ### 结论 通过上述的示例和说明,我们可以了解到创建一个自定义的 Grunt 任务需要哪些步骤以及需要掌握哪些基础概念。自定义任务的创建对于利用 Grunt 来自动化项目中的各种操作是非常重要的,它可以帮助开发者提高工作效率并保持代码的一致性和标准化。在掌握这些基础知识后,开发者可以更进一步地探索 Grunt 的高级特性,例如子任务、组合任务等,从而实现更加复杂和强大的自动化流程。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

数据可视化在缺失数据识别中的作用

![缺失值处理(Missing Value Imputation)](https://img-blog.csdnimg.cn/20190521154527414.PNG?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3l1bmxpbnpp,size_16,color_FFFFFF,t_70) # 1. 数据可视化基础与重要性 在数据科学的世界里,数据可视化是将数据转化为图形和图表的实践过程,使得复杂的数据集可以通过直观的视觉形式来传达信息。它
recommend-type

ABB机器人在自动化生产线中是如何进行路径规划和任务执行的?请结合实际应用案例分析。

ABB机器人在自动化生产线中的应用广泛,其核心在于精确的路径规划和任务执行。路径规划是指机器人根据预定的目标位置和工作要求,计算出最优的移动轨迹。任务执行则涉及根据路径规划结果,控制机器人关节和运动部件精确地按照轨迹移动,完成诸如焊接、装配、搬运等任务。 参考资源链接:[ABB-机器人介绍.ppt](https://wenku.csdn.net/doc/7xfddv60ge?spm=1055.2569.3001.10343) ABB机器人能够通过其先进的控制器和编程软件进行精确的路径规划。控制器通常使用专门的算法,如A*算法或者基于时间最优的轨迹规划技术,以确保机器人运动的平滑性和效率。此
recommend-type

网络物理突变工具的多点路径规划实现与分析

资源摘要信息:"多点路径规划matlab代码-mutationdocker:变异码头工人" ### 知识点概述 #### 多点路径规划与网络物理突变工具 多点路径规划指的是在网络环境下,对多个路径点进行规划的算法或工具。该工具可能被应用于物流、运输、通信等领域,以优化路径和提升效率。网络物理系统(CPS,Cyber-Physical System)结合了计算机网络和物理过程,其中网络物理突变工具是指能够修改或影响网络物理系统中的软件代码的功能,特别是在自动驾驶、智能电网、工业自动化等应用中。 #### 变异与Mutator软件工具 变异(Mutation)在软件测试领域是指故意对程序代码进行小的改动,以此来检测程序测试用例的有效性。mutator软件工具是一种自动化的工具,它能够在编程文件上执行这些变异操作。在代码质量保证和测试覆盖率的评估中,变异分析是提高软件可靠性的有效方法。 #### Mutationdocker Mutationdocker是一个配置为运行mutator的虚拟机环境。虚拟机环境允许用户在隔离的环境中运行软件,无需对现有系统进行改变,从而保证了系统的稳定性和安全性。Mutationdocker的使用为开发者提供了一个安全的测试平台,可以在不影响主系统的情况下进行变异测试。 #### 工具的五个阶段 网络物理突变工具按照以下五个阶段进行操作: 1. **安装工具**:用户需要下载并构建工具,具体操作步骤可能包括解压文件、安装依赖库等。 2. **生成突变体**:使用`./mutator`命令,顺序执行`./runconfiguration`(如果存在更改的config.txt文件)、`make`和工具执行。这个阶段涉及到对原始程序代码的变异生成。 3. **突变编译**:该步骤可能需要编译运行环境的配置,依赖于项目具体情况,可能需要执行`compilerun.bash`脚本。 4. **突变执行**:通过`runsave.bash`脚本执行变异后的代码。这个脚本的路径可能需要根据项目进行相应的调整。 5. **结果分析**:利用MATLAB脚本对变异过程中的结果进行分析,可能需要参考文档中的文件夹结构部分,以正确引用和处理数据。 #### 系统开源 标签“系统开源”表明该项目是一个开放源代码的系统,意味着它被设计为可供任何人自由使用、修改和分发。开源项目通常可以促进协作、透明性以及通过社区反馈来提高代码质量。 #### 文件名称列表 文件名称列表中提到的`mutationdocker-master`可能是指项目源代码的仓库名,表明这是一个主分支,用户可以从中获取最新的项目代码和文件。 ### 详细知识点 1. **多点路径规划**是网络物理系统中的一项重要技术,它需要考虑多个节点或路径点在物理网络中的分布,以及如何高效地规划它们之间的路径,以满足例如时间、成本、距离等优化目标。 2. **突变测试**是软件测试的一种技术,通过改变程序中的一小部分来生成变异体,这些变异体用于测试软件的测试用例集是否能够检测到这些人为的错误。如果测试用例集能够正确地识别出大多数或全部的变异体,那么可以认为测试用例集是有效的。 3. **Mutator软件工具**的使用可以自动化变异测试的过程,包括变异体的生成、编译、执行和结果分析。使用此类工具可以显著提高测试效率,尤其是在大型项目中。 4. **Mutationdocker的使用**提供了一个简化的环境,允许开发者无需复杂的配置就可以进行变异测试。它可能包括了必要的依赖项和工具链,以便快速开始变异测试。 5. **软件的五个操作阶段**为用户提供了清晰的指导,从安装到结果分析,每个步骤都有详细的说明,这有助于减少用户在使用过程中的困惑,并确保操作的正确性。 6. **开源系统的特性**鼓励了代码共享、共同开发和创新,同时也意味着用户可以通过社区的力量不断改进软件工具,这也是开源项目可持续发展的核心。 通过以上描述和知识点的展开,我们可以了解到多点路径规划matlab代码-mutationdocker:变异码头工人是一个涵盖了网络物理系统、变异测试、自动化软件工具以及开源精神的综合性项目。它通过一系列操作流程为用户提供了一个高效和稳定的代码测试环境,并且以开源的形式促进了软件测试技术的共享和创新。