最速下降法matlab代码
时间: 2023-12-27 21:04:41 浏览: 114
最速下降法(Steepest Descent Method)是一种求解无约束最优化问题的迭代算法,下面是一份 MATLAB 代码实现最速下降法:
```matlab
function [x, fval] = steepest_descent(f, x0, tol, max_iter)
% f: 目标函数
% x0: 初始点
% tol: 迭代停止条件
% max_iter: 最大迭代次数
% x: 迭代结果
% fval: 目标函数值
% 初始化
x = x0;
iter = 0;
fval = f(x);
while true
% 计算梯度
g = gradient(f, x);
% 计算步长
alpha = fminbnd(@(a) f(x - a*g), 0, 1);
% 迭代更新
x = x - alpha*g;
fval_new = f(x);
% 判断迭代是否终止
if abs(fval_new - fval) < tol || iter >= max_iter
break;
end
fval = fval_new;
iter = iter + 1;
end
end
```
其中 `gradient(f, x)` 是计算目标函数在点 `x` 处的梯度,`fminbnd` 是在区间 `[0, 1]` 上寻找函数 `f(x - a*g)` 的最小值,即计算步长 `alpha`。在迭代更新中,使用了最速下降法的公式:$x_{k+1}=x_k-\alpha_k\nabla f(x_k)$。
使用该函数,可以求解无约束最优化问题的最优解。例如:
```matlab
% 目标函数
f = @(x) x(1)^2 + x(2)^2 - 2*x(1)*x(2);
% 初始点
x0 = [1; 1];
% 调用最速下降法
[x, fval] = steepest_descent(f, x0, 1e-6, 1000);
% 输出结果
disp('最优解:');
disp(x);
disp('目标函数最小值:');
disp(fval);
```
该例子求解了目标函数 $f(x_1,x_2)=x_1^2+x_2^2-2x_1x_2$ 的最小值,初始点为 $(1,1)$,迭代停止条件为 $10^{-6}$,最大迭代次数为 $1000$。
阅读全文