C_nonzero = v_nonzero(1) * cos(sqrt(D/dx^2)*x) + v_nonzero(2) * sin(sqrt(D/dx^2)*x); % 非零本征值对应的浓度 J_nonzero = -D / sqrt(D/dx^2) * v_nonzero(1) * sin(sqrt(D/dx^2)*x) + D / sqrt(D/dx^2) * v_nonzero(2) * cos(sqrt(D/dx^2)*x); % 非零本征值对应的扩散通量转化为Latex格式
时间: 2023-12-17 10:03:58 浏览: 56
非零本征值对应的浓度 $C_{nonzero}$ 可以表示为:
$$C_{nonzero} = v_{nonzero}(1) \cos(\sqrt{\frac{D}{dx^2}} x) + v_{nonzero}(2) \sin(\sqrt{\frac{D}{dx^2}} x)$$
非零本征值对应的扩散通量 $J_{nonzero}$ 可以表示为:
$$J_{nonzero} = -\frac{D}{\sqrt{\frac{D}{dx^2}}} v_{nonzero}(1) \sin(\sqrt{\frac{D}{dx^2}} x) + \frac{D}{\sqrt{\frac{D}{dx^2}}} v_{nonzero}(2) \cos(\sqrt{\frac{D}{dx^2}} x)$$
其中,$v_{nonzero}(1)$ 和 $v_{nonzero}(2)$ 分别是非零本征值对应的本征向量的第一个分量和第二个分量,$x$ 是位置坐标,$D$ 是扩散系数,$dx^2$ 是系数。
相关问题
解释下列代码# -*- coding: gbk-*- import numpy as np import pandas as pd header = ['user_id', 'item_id', 'rating', 'timestamp'] with open("u.data", "r") as file_object: df = pd.read_csv(file_object, sep='\t', names=header) print(df) n_users = df.user_id.unique().shape[0] n_items = df.item_id.unique().shape[0] print('Number of users = ' + str(n_users) + ' | Number of movies =' + str(n_items)) from sklearn.model_selection import train_test_split train_data, test_data = train_test_split(df, test_size=0.2, random_state=21) train_data_matrix = np.zeros((n_users, n_items)) for line in train_data.itertuples(): train_data_matrix[line[1] - 1, line[2] -1] = line[3] test_data_matrix = np.zeros((n_users, n_items)) for line in test_data.itertuples(): test_data_matrix[line[1] - 1, line[2] - 1] = line[3] print(train_data_matrix.shape) print(test_data_matrix.shape) from sklearn.metrics.pairwise import cosine_similarity item_similarity = cosine_similarity(train_data_matrix.T) print(u" 物品相似度矩阵 :", item_similarity.shape) print(u"物品相似度矩阵: ", item_similarity) def predict(ratings, similarity, type): # 基于物品相似度矩阵的 if type == 'item': pred = ratings.dot(similarity) / np.array([np.abs(similarity).sum(axis=1)]) print(u"预测值: ", pred.shape) return pred # 预测结果 item_prediction = predict(train_data_matrix, item_similarity, type='item') print(item_prediction) from sklearn.metrics import mean_squared_error from math import sqrt def rmse(prediction, ground_truth): prediction = prediction[ground_truth.nonzero()].flatten() ground_truth = ground_truth[ground_truth.nonzero()].flatten() return sqrt(mean_squared_error(prediction, ground_truth)) item_prediction = np.nan_to_num(item_prediction) print('Item-based CF RMSE: ' + str(rmse(item_prediction, test_data_matrix)))
这段代码主要是实现了基于物品相似度矩阵的推荐系统,具体流程如下:
1. 读取 u.data 数据集文件,用 pandas 库将其转换成 DataFrame 格式,并输出该数据集;
2. 计算该数据集中有多少个用户和多少个物品;
3. 将数据集分为训练集和测试集,其中训练集占 80%;
4. 构建训练集和测试集的评分矩阵,其中行表示用户,列表示物品,值表示评分;
5. 计算物品相似度矩阵,这里使用了 sklearn 库中的 cosine_similarity 方法;
6. 基于物品相似度矩阵,预测测试集中每个用户对每个物品的评分;
7. 计算预测结果与真实评分之间的均方根误差(RMSE),用于评估模型的性能。
需要注意的是,该代码只实现了基于物品相似度矩阵的推荐系统,还可以尝试其他的推荐算法,比如基于用户相似度矩阵的推荐系统。此外,还可以对模型进行参数调优,以获得更好的性能。
解释下列代码 import numpy as np import pandas as pd #数据文件格式用户id、商品id、评分、时间戳 header = ['user_id', 'item_id', 'rating', 'timestamp'] with open( "u.data", "r") as file_object: df=pd.read_csv(file_object,sep='\t',names=header) #读取u.data文件 print(df) n_users = df.user_id.unique().shape[0] n_items = df.item_id.unique().shape[0] print('Mumber of users = ' + str(n_users) + ' | Number of movies =' + str(n_items)) from sklearn.model_selection import train_test_split train_data, test_data = train_test_split(df, test_size=0.2, random_state=21) train_data_matrix = np.zeros((n_users, n_items)) for line in train_data.itertuples(): train_data_matrix[line[1] - 1, line[2] -1] = line[3] test_data_matrix = np.zeros((n_users, n_items)) for line in test_data.itertuples(): test_data_matrix[line[1] - 1, line[2] - 1] = line[3] print(train_data_matrix.shape) print(test_data_matrix.shape) from sklearn.metrics.pairwise import cosine_similarity #计算用户相似度 user_similarity = cosine_similarity(train_data_matrix) print(u"用户相似度矩阵: ", user_similarity.shape) print(u"用户相似度矩阵: ", user_similarity) def predict(ratings, similarity, type): # 基于用户相似度矩阵的 if type == 'user': mean_user_ratings = ratings.mean(axis=1) ratings_diff = (ratings - mean_user_ratings[:, np.newaxis] ) pred =mean_user_ratings[:, np.newaxis] + np.dot(similarity, ratings_diff)/ np.array( [np.abs(similarity).sum(axis=1)]).T print(u"预测值: ", pred.shape) return pred user_prediction = predict(train_data_matrix, user_similarity, type='user') print(user_prediction) from sklearn.metrics import mean_squared_error from math import sqrt def rmse(prediction, ground_truth): prediction = prediction[ground_truth.nonzero()].flatten() ground_truth = ground_truth[ground_truth.nonzero()].flatten() return sqrt(mean_squared_error(prediction, ground_truth)) print('User-based CF RMSE: ' + str(rmse(user_prediction, test_data_matrix)))
这段代码是一个基于协同过滤的推荐系统,使用了用户相似度矩阵来预测用户对电影的评分。具体步骤如下:
1. 读取数据文件u.data,包括用户id、商品id、评分和时间戳,并将其转化为pandas的DataFrame格式。
2. 统计用户数量和电影数量,用于后续构建评分矩阵。
3. 将数据集分割成训练集和测试集,其中测试集占20%。
4. 基于训练集构建评分矩阵,将用户对电影的评分存储在train_data_matrix中。
5. 计算用户相似度矩阵,使用余弦相似度来度量用户之间的相似性。
6. 定义预测函数predict,用于预测用户对电影的评分,具体方法是基于用户相似度矩阵来进行加权平均。
7. 使用预测函数对训练集进行预测,将预测结果存储在user_prediction中。
8. 计算预测结果与测试集的均方根误差(RMSE),用于评估推荐系统的准确性。
总体来说,这段代码是一个基本的协同过滤推荐系统,使用了余弦相似度来度量用户之间的相似性,预测用户对电影的评分,并通过RMSE来评估预测的准确性。
阅读全文