matlab中的三维A*算法
时间: 2023-12-04 19:58:22 浏览: 127
三维A*算法是一种用于在三维空间中搜索最短路径的算法。它基于A*算法,但需要考虑第三个维度(高度)的影响。以下是一个简单的Matlab实现:
首先,定义节点类:
```matlab
classdef Node
properties
x; % x坐标
y; % y坐标
z; % z坐标
g; % 起点到该节点的实际代价
h; % 该节点到终点的预估代价
f; % f = g + h
parent; % 父节点
is_obstacle; % 是否为障碍物
end
methods
function node = Node(x, y, z, is_obstacle)
node.x = x;
node.y = y;
node.z = z;
node.g = Inf;
node.h = Inf;
node.f = Inf;
node.parent = [];
node.is_obstacle = is_obstacle;
end
function node = set_g(node, g)
node.g = g;
node.f = node.g + node.h;
end
function node = set_h(node, h)
node.h = h;
node.f = node.g + node.h;
end
function cost = get_cost(node, other_node)
% 计算两个节点之间的代价
dx = abs(node.x - other_node.x);
dy = abs(node.y - other_node.y);
dz = abs(node.z - other_node.z);
if dx > dy
temp = dx;
dx = dy;
dy = temp;
end
if dy > dz
temp = dy;
dy = dz;
dz = temp;
end
cost = sqrt(3)*dx + sqrt(2)*(dy-dx) + (dz-dy);
end
function bool = is_equal(node, other_node)
bool = (node.x == other_node.x) && (node.y == other_node.y) && (node.z == other_node.z);
end
end
end
```
然后,定义一个三维A*搜索类:
```matlab
classdef AStar3D
properties
start_node; % 起点
end_node; % 终点
open_list; % 开放列表(未遍历的节点)
closed_list; % 封闭列表(已遍历的节点)
nodes; % 所有节点的列表
grid_size; % 网格大小(x, y, z)
resolution; % 分辨率
obstacles; % 障碍物
end
methods
function astar = AStar3D(grid_size, resolution)
astar.grid_size = grid_size;
astar.resolution = resolution;
astar.obstacles = false(grid_size);
astar.nodes = cell(grid_size);
for x = 1:grid_size(1)
for y = 1:grid_size(2)
for z = 1:grid_size(3)
astar.nodes{x,y,z} = Node(x, y, z, astar.obstacles(x,y,z));
end
end
end
end
function astar = set_obstacle(astar, x, y, z, is_obstacle)
astar.obstacles(x,y,z) = is_obstacle;
astar.nodes{x,y,z}.is_obstacle = is_obstacle;
end
function astar = set_start(astar, x, y, z)
astar.start_node = astar.nodes{x,y,z};
end
function astar = set_end(astar, x, y, z)
astar.end_node = astar.nodes{x,y,z};
end
function path = find_path(astar)
% 初始化起点
astar.start_node.g = 0;
astar.start_node.h = astar.start_node.get_cost(astar.end_node);
astar.start_node.f = astar.start_node.h;
astar.open_list = [astar.start_node];
astar.closed_list = [];
while ~isempty(astar.open_list)
% 从开放列表中取出代价最小的节点
current_node = astar.open_list(1);
for i = 1:length(astar.open_list)
if astar.open_list(i).f < current_node.f
current_node = astar.open_list(i);
end
end
% 如果当前节点为终点,则返回路径
if current_node.is_equal(astar.end_node)
path = astar.get_path(current_node);
return;
end
% 从开放列表中移除当前节点,并加入封闭列表中
astar.open_list = setdiff(astar.open_list, current_node);
astar.closed_list = [astar.closed_list, current_node];
% 遍历当前节点的所有相邻节点
neighbors = astar.get_neighbors(current_node);
for i = 1:length(neighbors)
neighbor = neighbors(i);
% 如果相邻节点已在封闭列表中,则跳过
if ismember(neighbor, astar.closed_list)
continue;
end
% 计算从起点到该相邻节点的代价
tentative_g = current_node.g + current_node.get_cost(neighbor);
% 如果相邻节点不在开放列表中,或者从起点到该相邻节点的代价更小
if ~ismember(neighbor, astar.open_list) || tentative_g < neighbor.g
% 更新相邻节点的代价
neighbor.parent = current_node;
neighbor = neighbor.set_g(tentative_g);
neighbor = neighbor.set_h(neighbor.get_cost(astar.end_node));
% 如果相邻节点不在开放列表中,则加入开放列表中
if ~ismember(neighbor, astar.open_list)
astar.open_list = [astar.open_list, neighbor];
end
end
end
end
% 如果开放列表为空且未找到路径,则返回空
path = [];
end
function path = get_path(astar, node)
% 返回从起点到指定节点的路径
path = [node];
while ~isempty(node.parent)
node = node.parent;
path = [node, path];
end
end
function neighbors = get_neighbors(astar, node)
% 返回当前节点的所有相邻节点
neighbors = [];
for x = -1:1
for y = -1:1
for z = -1:1
if x == 0 && y == 0 && z == 0
continue;
end
neighbor_x = node.x + x;
neighbor_y = node.y + y;
neighbor_z = node.z + z;
if neighbor_x < 1 || neighbor_x > astar.grid_size(1) || ...
neighbor_y < 1 || neighbor_y > astar.grid_size(2) || ...
neighbor_z < 1 || neighbor_z > astar.grid_size(3)
continue;
end
neighbor = astar.nodes{neighbor_x, neighbor_y, neighbor_z};
if neighbor.is_obstacle
continue;
end
neighbors = [neighbors, neighbor];
end
end
end
end
function plot_path(astar, path)
% 绘制路径
[x,y,z] = meshgrid(1:astar.grid_size(1), 1:astar.grid_size(2), 1:astar.grid_size(3));
figure;
scatter3(x(astar.obstacles), y(astar.obstacles), z(astar.obstacles), 'k', 'filled');
hold on;
scatter3(astar.start_node.x, astar.start_node.y, astar.start_node.z, 'r', 'filled');
scatter3(astar.end_node.x, astar.end_node.y, astar.end_node.z, 'g', 'filled');
for i = 1:length(path)-1
plot3([path(i).x, path(i+1).x], [path(i).y, path(i+1).y], [path(i).z, path(i+1).z], 'b', 'LineWidth', 2);
end
axis equal;
xlabel('x');
ylabel('y');
zlabel('z');
end
end
end
```
最后,使用以下代码创建一个AStar3D对象,设置起点、终点、障碍物,并搜索路径:
```matlab
grid_size = [10, 10, 10];
resolution = 1;
astar = AStar3D(grid_size, resolution);
astar.set_start(1, 1, 1);
astar.set_end(10, 10, 10);
astar.set_obstacle(3, 3, 3, true);
astar.set_obstacle(4, 3, 3, true);
astar.set_obstacle(5, 3, 3, true);
path = astar.find_path();
astar.plot_path(path);
```
阅读全文