请写出符合如下要求的代码,并解析:单类分类模型(CNN回归到一个函数值),模型的输出值构成一个高斯分布,用遗传算法进行优化
时间: 2024-05-06 15:20:19 浏览: 47
以下是符合要求的代码示例:
```python
import numpy as np
from keras.models import Sequential
from keras.layers import Dense, Flatten, Conv2D
from keras.optimizers import Adam
from keras.utils import to_categorical
from sklearn.metrics import mean_squared_error
import random
# 构造数据
X = np.random.rand(1000, 28, 28, 1)
y = np.random.normal(loc=0.0, scale=1.0, size=1000)
# 定义模型
model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=(28, 28, 1)))
model.add(Conv2D(64, kernel_size=(3, 3), activation='relu'))
model.add(Flatten())
model.add(Dense(1))
# 编译模型
model.compile(loss='mse', optimizer=Adam())
# 定义适应度函数
def fitness_func(params):
# params: 模型参数,类型为list
model.set_weights(params)
y_pred = model.predict(X)
mse = mean_squared_error(y, y_pred)
fitness = 1.0 / (1.0 + mse)
return fitness
# 定义遗传算法参数
POPULATION_SIZE = 50
MUTATION_RATE = 0.1
GENERATIONS = 100
WEIGHT_SHAPE = model.get_weights()[0].shape
# 初始化种群
population = []
for i in range(POPULATION_SIZE):
weights = []
for shape in WEIGHT_SHAPE:
weight = np.random.uniform(low=-1.0, high=1.0, size=shape)
weights.append(weight)
population.append(weights)
# 进化
for generation in range(GENERATIONS):
# 计算适应度
fitness_scores = []
for i in range(POPULATION_SIZE):
fitness_scores.append(fitness_func(population[i]))
# 选择
parents = []
for i in range(POPULATION_SIZE):
parent1 = random.choices(population, weights=fitness_scores)[0]
parent2 = random.choices(population, weights=fitness_scores)[0]
parents.append((parent1, parent2))
# 交叉
offspring = []
for i in range(POPULATION_SIZE):
parent1, parent2 = parents[i]
child = []
for j in range(len(parent1)):
if random.random() < 0.5:
child.append(parent1[j])
else:
child.append(parent2[j])
offspring.append(child)
# 变异
for i in range(POPULATION_SIZE):
if random.random() < MUTATION_RATE:
idx = random.randint(0, len(offspring[i])-1)
offspring[i][idx] = np.random.uniform(low=-1.0, high=1.0, size=offspring[i][idx].shape)
# 更新种群
population = offspring
# 获取最优解
best_weights = population[np.argmax(fitness_scores)]
model.set_weights(best_weights)
print("Best fitness:", fitness_func(best_weights))
```
这段代码首先构造了一个CNN回归模型,输出值构成一个高斯分布。然后定义了一个适应度函数,用于衡量模型参数的好坏。接下来使用遗传算法进行优化,将模型参数作为个体,通过不断选择、交叉、变异等操作,进化出更优秀的个体。最后获取最优解,并将其应用于模型中。
遗传算法的参数包括种群大小、变异率、迭代次数等。在进化过程中,首先计算每个个体的适应度,并基于适应度进行选择。选择过程中,根据适应度的大小,越优秀的个体被选中的概率越大。接下来进行交叉操作,将两个个体的某些部分进行交换,以获得新的个体。最后进行变异操作,随机改变个体的某些部分,以增加种群的多样性。通过不断进行选择、交叉、变异等操作,种群中的个体逐渐进化,直到找到最优解。最后将最优解应用于模型中,得到一个高性能的CNN回归模型。
阅读全文