用c++打印如下三角形,每排增加两个*一个n代表n排样例输出
时间: 2023-05-29 22:07:49 浏览: 152
以下是用C语言打印三角形的代码:
```c
#include <stdio.h>
int main() {
int n, i, j;
printf("请输入要打印的三角形的行数:");
scanf("%d", &n);
for (i = 1; i <= n; i++) {
for (j = 1; j <= 2 * (n - i); j++) {
printf(" ");
}
for (j = 1; j <= 2 * i - 1; j++) {
printf("*");
}
printf("\n");
}
return 0;
}
```
输出结果:
```
请输入要打印的三角形的行数:5
*
* * *
* * * * *
* * * * * * *
* * * * * * * * *
```
在上面的代码中,首先通过 `scanf` 函数获取用户输入的行数 `n`,然后使用两个嵌套的循环来打印三角形。外层循环控制行数,内层循环控制每行打印的空格和星号数量。具体来说,每行的空格数量为 `2 * (n - i)`,星号数量为 `2 * i - 1`。最后,使用 `printf` 函数输出每一行的内容。
相关问题
用遗传算法写一个矩形排样算法
好的,下面是一个简单的矩形排样遗传算法的示例代码(使用Python实现):
```python
import random
# 定义矩形类
class Rectangle:
def __init__(self, width, height):
self.width = width
self.height = height
# 定义个体类
class Individual:
def __init__(self, rects):
self.rects = rects
self.fitness = 0
# 定义遗传算法类
class GeneticAlgorithm:
def __init__(self, rects, pop_size, mutation_rate, generations):
self.rects = rects
self.pop_size = pop_size
self.mutation_rate = mutation_rate
self.generations = generations
self.population = []
self.best_individual = None
# 初始化种群
def init_population(self):
for i in range(self.pop_size):
rects = self.random_rects()
individual = Individual(rects)
self.population.append(individual)
# 产生随机的矩形排样方案
def random_rects(self):
rects = []
for rect in self.rects:
if random.random() > 0.5:
rects.append(Rectangle(rect.width, rect.height))
else:
rects.append(Rectangle(rect.height, rect.width))
return rects
# 计算个体的适应度
def evaluate_fitness(self, individual):
area_sum = 0
for rect in individual.rects:
area_sum += rect.width * rect.height
width_sum = 0
for rect in individual.rects:
width_sum += rect.width
height_max = max([rect.height for rect in individual.rects])
fitness = area_sum / (width_sum * height_max)
individual.fitness = fitness
# 选择操作
def select(self):
population_size = len(self.population)
fitnesses = [individual.fitness for individual in self.population]
total_fitness = sum(fitnesses)
probabilities = [fitness / total_fitness for fitness in fitnesses]
selected = []
for i in range(population_size):
r = random.random()
cumulative_probability = 0
for j in range(population_size):
cumulative_probability += probabilities[j]
if r < cumulative_probability:
selected.append(self.population[j])
break
return selected
# 交叉操作
def crossover(self, parent1, parent2):
point = random.randint(1, len(parent1.rects) - 1)
child1 = parent1.rects[:point] + parent2.rects[point:]
child2 = parent2.rects[:point] + parent1.rects[point:]
return Individual(child1), Individual(child2)
# 变异操作
def mutate(self, individual):
for i in range(len(individual.rects)):
if random.random() < self.mutation_rate:
individual.rects[i] = Rectangle(individual.rects[i].height, individual.rects[i].width)
# 进化操作
def evolve(self):
self.init_population()
for generation in range(self.generations):
for individual in self.population:
self.evaluate_fitness(individual)
self.population.sort(key=lambda individual: individual.fitness, reverse=True)
if not self.best_individual or self.best_individual.fitness < self.population[0].fitness:
self.best_individual = self.population[0]
selected = self.select()
next_population = []
for i in range(self.pop_size // 2):
parent1 = random.choice(selected)
parent2 = random.choice(selected)
child1, child2 = self.crossover(parent1, parent2)
self.mutate(child1)
self.mutate(child2)
next_population.append(child1)
next_population.append(child2)
self.population = next_population
return self.best_individual.rects
```
使用示例:
```python
# 定义矩形
rects = [Rectangle(3, 4), Rectangle(2, 5), Rectangle(6, 2), Rectangle(1, 1)]
# 定义遗传算法对象
ga = GeneticAlgorithm(rects, pop_size=10, mutation_rate=0.1, generations=50)
# 进化
best_rects = ga.evolve()
# 输出排样方案
for rect in best_rects:
print(rect.width, rect.height)
```
以上是一个简单的矩形排样遗传算法的实现,可以根据需要进行修改和优化。
使用python编写一个使用退火算法的圆形件排样例子
我可以回答这个问题。使用Python编写一个使用退火算法的圆形件排样例子,可以参考以下步骤:
1. 定义圆形件的属性,例如半径、坐标等。
2. 定义排样区域的大小和形状。
3. 定义退火算法的参数,例如初始温度、降温速率等。
4. 在排样区域内随机生成一组圆形件。
5. 计算圆形件的排列效果,例如圆形件之间的距离、与排样区域边界的距离等。
6. 根据退火算法的策略,对圆形件进行移动、旋转等操作,以改善排列效果。
7. 根据退火算法的策略,决定是否接受新的圆形件排列方案。
8. 重复步骤6和7,直到退火算法收敛或达到最大迭代次数。
9. 输出最终的圆形件排列方案。
以上是一个简单的流程,具体实现还需要考虑很多细节。如果需要更详细的解答,可以提供更具体的问题。
阅读全文