基于自适应池化方式的卷积神经网络 python
时间: 2023-06-30 16:03:22 浏览: 80
以下是一个基于自适应池化方式的卷积神经网络的Python实现示例:
```python
import torch
import torch.nn as nn
class AdaptivePoolNet(nn.Module):
def __init__(self):
super(AdaptivePoolNet, self).__init__()
self.conv1 = nn.Conv2d(3, 32, kernel_size=3)
self.conv2 = nn.Conv2d(32, 64, kernel_size=3)
self.conv3 = nn.Conv2d(64, 128, kernel_size=3)
self.pool = nn.AdaptiveAvgPool2d((1, 1)) # 自适应平均池化层
self.fc = nn.Linear(128, 10) # 全连接层
def forward(self, x):
x = nn.functional.relu(self.conv1(x))
x = nn.functional.relu(self.conv2(x))
x = nn.functional.relu(self.conv3(x))
x = self.pool(x)
x = x.view(-1, 128)
x = self.fc(x)
return x
# 实例化模型
model = AdaptivePoolNet()
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
# 训练
for epoch in range(10):
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
inputs, labels = data
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if i % 2000 == 1999:
print('[%d, %5d] loss: %.3f' %
(epoch + 1, i + 1, running_loss / 2000))
running_loss = 0.0
print('Finished Training')
```
在这个示例中,我们使用了PyTorch框架,定义了一个名为AdaptivePoolNet的类,它继承了nn.Module类。我们在构造函数中定义了卷积层、自适应平均池化层和全连接层。在前向传播函数中,我们依次将输入x通过卷积层、ReLU激活函数和自适应平均池化层进行处理,然后将结果展开并通过全连接层输出。在训练过程中,我们使用了交叉熵损失函数和Adam优化器进行优化。
阅读全文