% i=1;j=27; % k=path(i,j); 25 % disp(i); % while k~=j % disp(k); % k=path(k,j); % end % disp(j);是什么意思

时间: 2023-12-07 16:04:31 浏览: 29
这段代码是一个简单的循环,其目的是从矩阵`path`的第1行第27列的元素出发,沿着矩阵中的某条路径一直走到第27行第27列的元素。具体来说,这段代码的含义如下: ``` % 将变量i赋值为1,将变量j赋值为27 i=1; j=27; % 从矩阵path的第1行第27列的元素出发 k = path(i,j); % 显示变量i的值(1) disp(i); % 当k不等于j时,继续循环 while k ~= j % 显示变量k的值 disp(k); % 沿着矩阵path中的某条路径移动到下一个元素 k = path(k,j); end % 显示变量j的值(27) disp(j); ``` 需要注意的是,上述代码中的矩阵`path`和变量`path`的值并没有给出,因此无法确定实际上会走哪条路径。这段代码只是一个通用的框架,可以根据实际情况进行修改。
相关问题

%%%%遗传算法求解TSP问题%%%%%%%%%%%%%%%%%%%%%%%%%%% clc clear close all load cityposition1.mat X=cityposition1; %城市位置坐标 D=Distance(X); %生成距离矩阵 N=size(X,1); %城市个数 %% %遗传参数 NIND=100; %种群大小 MAXGEN=200; %最大遗传代数 Pc=0.9; %交叉概率 Pm=0.05; %变异概率 GGAP=0.9; %代沟 %% %初始化种群 Chrom=InitPop(NIND,N); %% %画出随机解的路径图 DrawPath(Chrom(1,:),X) pause(0.1) %% %输出随机解的路径和总距离 disp('初始种群中的一个随机值:') Outputpath(Chrom(1,:)); Rlength=Pathlength(D,Chrom(1,:)); disp(['总距离:',num2str(Rlength)]); disp('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~') %% %优化 gen=0; figure; hold on; box on; xlim([0,MAXGEN]) title('优化过程') xlabel('代数') ylabel('最优值') ObjV=Pathlength(D,Chrom); PreObjV=min(ObjV); while gen<MAXGEN %%计算适应度 ObjV=Pathlength(D,Chrom); line([gen-1,gen],[PreObjV,min(ObjV)]); pause(0.0001) PreObjV=min(ObjV); FitnV=Fitness(ObjV); %%选择 SelCh=Select1(Chrom,FitnV); %%交叉 SelCh=Recombin(SelCh,Pc); %%变异 SelCh=Mutate(SelCh,Pm); %%逆转 SelCh=Reverse(SelCh,D); %%重新插入子代的新种群 Chrom=Reins(Chrom,SelCh,ObjV); %%更新迭代次数 gen=gen+1; end ObjV=Pathlength(D,Chrom); [minObjV,minTnd]=min(ObjV); DrawPath(Chrom(minTnd(1),:),X) %%输出最优解的路径和总距离 disp('最优解:') p=Outputpath(Chrom(minTnd(1),:)); disp(['总距离:',num2str(ObjV(minTnd(1)))]); disp('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~')

这是一个求解TSP问题的遗传算法的Matlab代码。代码中包含了初始化种群、计算适应度、选择、交叉、变异、逆转和重新插入等步骤,最终输出最优解的路径和总距离。以下是代码的解释: 1. 加载城市坐标数据 ```matlab load cityposition1.mat X=cityposition1; %城市位置坐标 D=Distance(X); %生成距离矩阵 N=size(X,1); %城市个数 ``` 这段代码加载了一个城市坐标的数据,并根据坐标计算了城市之间的距离,以及城市的数量。 2. 初始化种群 ```matlab NIND=100; %种群大小 Chrom=InitPop(NIND,N); %初始化种群 ``` 这段代码初始化了种群,其中NIND是种群大小,Chrom是一个NIND* N的矩阵,每一行表示种群中一个个体的基因型(即城市的排列顺序)。 3. 画出随机解的路径图 ```matlab DrawPath(Chrom(1,:),X) %画出随机解的路径图 pause(0.1) ``` 这段代码使用DrawPath函数画出随机解的路径图,其中Chrom(1,:)表示种群中第一个个体的基因型,即城市的排列顺序,X表示城市的坐标。 4. 输出随机解的路径和总距离 ```matlab Outputpath(Chrom(1,:)); %输出随机解的路径 Rlength=Pathlength(D,Chrom(1,:)); %计算随机解的总距离 disp(['总距离:',num2str(Rlength)]); ``` 这段代码使用Outputpath函数输出随机解的路径,使用Pathlength函数计算随机解的总距离。 5. 遗传算法优化 ```matlab gen=0; %初始化代数 ObjV=Pathlength(D,Chrom); %计算适应度 PreObjV=min(ObjV); while gen<MAXGEN %%计算适应度 ObjV=Pathlength(D,Chrom); line([gen-1,gen],[PreObjV,min(ObjV)]); pause(0.0001) PreObjV=min(ObjV); FitnV=Fitness(ObjV); %%选择 SelCh=Select1(Chrom,FitnV); %%交叉 SelCh=Recombin(SelCh,Pc); %%变异 SelCh=Mutate(SelCh,Pm); %%逆转 SelCh=Reverse(SelCh,D); %%重新插入子代的新种群 Chrom=Reins(Chrom,SelCh,ObjV); %%更新迭代次数 gen=gen+1; end ``` 这段代码使用遗传算法进行优化,其中MAXGEN是最大遗传代数,FitnV是适应度向量,SelCh是选择出的新种群,Pc和Pm分别是交叉概率和变异概率,Reverse函数用于逆转某个个体的一段基因,Reins函数用于重新插入子代的新种群。 6. 输出最优解的路径和总距离 ```matlab ObjV=Pathlength(D,Chrom); [minObjV,minTnd]=min(ObjV); DrawPath(Chrom(minTnd(1),:),X) %画出最优解的路径图 p=Outputpath(Chrom(minTnd(1),:)); %输出最优解的路径 disp(['总距离:',num2str(ObjV(minTnd(1)))]); ``` 这段代码使用Pathlength函数计算最优解的总距离,使用DrawPath函数画出最优解的路径图,使用Outputpath函数输出最优解的路径和总距离。 总的来说,这是一个完整的求解TSP问题的遗传算法实现,包括了种群初始化、适应度计算、选择、交叉、变异、逆转和重新插入等步骤。

function [I,w,h,level] = ppmread(path) %***************************************************** % Title: QMUL_ppmread % Input Parameter: path of the ppm file % Description: This file reads .ppm file % open the file in read mode f= fopen(path,'r'); A = 0 ; % Ascii flag % ignore the comments in the file a = fscanf(f,'%s',1); while(a(1)=='#') a = fscanf(f,'%s',1); end % check magic number if ((strcmp(a,'P3')==0) &&(strcmp(a,'P6')==0)) while(a(1)=='#') a = fscanf(f,'%s',1); end disp('its not ppm file'); else disp('its ppm file'); if(strcmp(a,'P3')) A = 1; end a = fscanf(f,'%s',1); while(a(1) == '#') b = fgets(f); % throw away the comments line a= fscanf(f,'%s',1); % read first character of next line end w = str2num(a); % width of image a= fscanf(f,'%s',1); while(a(1) == '#') b = fgets(f); a= fscanf(f,'%s',1); end h = str2num(a); % hight of image a= fscanf(f,'%s',1); while(a(1) == '#') b = fgets(f); % throw away the comments line a= fscanf(f,'%s',1); end level = str2num(a); % colour levels if (A == 1) for i = 1:h for j = 1:w I(i,j,1) = fscanf(f,'%i',1); % Red I(i,j,2) = fscanf(f,'%i',1); % Green I(i,j,3) = fscanf(f,'%i',1); % Blue end end else % Skip one more char fread(f,1); % Now read the matrix Arr = uint8(fread(f)); index = 0; for i = 1:1:h for j = 1:w index = index+1; I(i,j,1) = Arr(index); index = index+1; I(i,j,2) = Arr(index); index = index+1; I(i,j,3) = Arr(index); end end end end帮我解释这段代码

这是一个Matlab函数,用于读取ppm文件的像素数据。函数的输入参数是ppm文件的路径,输出参数为图像数据、图像宽度、图像高度和色彩级别。 函数首先打开ppm文件并读取其头信息,包括图像宽度、高度和色彩级别,并根据文件格式(P3或P6)判断是否为ppm文件。 接下来,根据文件格式分别读取像素数据。如果文件格式为P3(ASCII格式),则逐行读取每个像素的RGB值,并将其存储在图像数据矩阵I中。如果文件格式为P6(二进制格式),则使用fread函数读取所有像素的RGB值,并将其存储在一个一维数组Arr中,最后将Arr中的数据按行列顺序存储在图像数据矩阵I中。 在读取像素数据之前,函数还会忽略ppm文件中的注释行。

相关推荐

分析这段代码的错误。 %% 初始化 % 最大迭代次数 RRTCountMax = 30000; APFCountMax = 30000; % 地图范围 mapLimit = [0, 10, 0, 10]; % 步长 RRTstep = 0.1; APFstep = 0.007; % 起始点、目标点 % select = 5; starts = [1, 5; 1, 1; 1, 9; 1, 3; 4,4]; targets = [9, 4; 9,9; 9, 1; 5, 9; 9,8]; select = 1; start = starts(select, :); target = targets(select, :); % 障碍物 x y r obs = [ 3.5, 3.1, 0.3; 2.5, 5.5, 0.5; 5.2, 6.6, 0.4; 6.8, 4.5, 0.7; 7.4, 7.1, 0.5; 5.1, 4.8, 0.3; 3.2, 8.8, 0.5; 6.7, 8.9, 0.3; 6.2, 1.8, 0.2; 9.1, 5.6, 0.3 ]; % kAttr, kRep kAttr = 1; kRep = 5; kObs = 3; axis(mapLimit); hold on; cla; for i = 1: size(obs, 1) rectangle('Position', [obs(i,1)-obs(i,3), obs(i,2)-obs(i,3), obs(i,3) * 2, obs(i,3) * 2], 'Curvature', [1 1]); end plot(start(1), start(2), '.', 'markersize',30, 'color','red'); plot(target(1), target(2), '.', 'markersize',30, 'color','green'); % ok = false; result = []; while ~ok ok = true; rrt_result = RRTstar(mapLimit, start, target, obs, RRTstep, RRTCountMax); if isempty(rrt_result) disp("rrt star cannot find path") return end if size(rrt_result, 1) == 1 disp('start == target') return end plot(rrt_result(:, 1), rrt_result(:, 2), '-', 'color','blue'); for i = 30000: size(rrt_result, 1) apf_start = rrt_result(i - 2, :); apf_target = rrt_result(i, :); [apf_result, success, newStart, count, obs] = APF(mapLimit, start, target,apf_start, apf_target, obs, APFstep, APFCountMax, kAttr, kRep, kObs); result = [result; apf_result]; if (success == false) ok = false; start = newStart; break; end end end plot(result(:, 1), result(:, 2), '.', 'color','red');

可以不要用load读取数据吗,修改以下:% 读取节点坐标数据 node_data = load('node_coordinates.txt'); node_num = size(node_data, 1); % 计算邻接矩阵和流量矩阵 adj_matrix = zeros(node_num, node_num); flow_matrix = zeros(node_num, node_num); for i = 1:node_num for j = (i+1):node_num % 计算节点i和节点j之间的距离 distance = norm(node_data(i,:) - node_data(j,:)); % 如果距离小于某个阈值,则认为节点i和节点j之间有一条边 if distance < threshold adj_matrix(i,j) = 1; adj_matrix(j,i) = 1; flow_matrix(i,j) = rand(); % 随机生成流量矩阵 flow_matrix(j,i) = flow_matrix(i,j); end end end % 计算连通介数中心性 betweenness = zeros(node_num, 1); for s = 1:node_num % 初始化距离和路径数 distance = -1 * ones(node_num, 1); path_num = zeros(node_num, 1); distance(s) = 0; path_num(s) = 1; % 初始化队列 queue = s; % BFS遍历整个网络 while ~isempty(queue) u = queue(1); queue(1) = []; % 遍历u的邻居节点 for v = find(adj_matrix(u,:)) % 如果v没有被遍历过 if distance(v) < 0 queue(end+1) = v; distance(v) = distance(u) + 1; end % 如果v是u的后继节点 if distance(v) == distance(u) + 1 path_num(v) = path_num(v) + path_num(u); end end end % 计算s到其他节点的最短路径数和s是这些路径中的多少个介数节点 credit = zeros(node_num, 1); while ~isempty(queue) v = queue(end); queue(end) = []; for u = find(adj_matrix(:,v))' if distance(u) == distance(v) - 1 credit(u) = credit(u) + (path_num(u) / path_num(v)) * (1 + credit(v)); end end end betweenness = betweenness + credit; end % 输出前十个重要节点 [~, idx] = sort(betweenness, 'descend'); top_nodes = idx(1:10); disp('Top 10 important nodes:'); disp(top_nodes');

将这段代码变成用matlab实现#include<bits/stdc++.h> using namespace std; struct Pos{ int p; int w; int s; int v; int Get(){ return p*8+w*4+s*2+v; } }; Pos Change(Pos a,int i){ if(i==0) a.p=abs(a.p-1); else if(i==1){ //商人和狼 if(a.p==a.w)a.w=abs(a.w-1); a.p=abs(a.p-1); } else if(i==2){ //商人和羊 if(a.p==a.s)a.s=abs(a.s-1); a.p=abs(a.p-1); } else { //商人和菜 if(a.p==a.v)a.v=abs(a.v-1); a.p=abs(a.p-1); } return a; } int Judge(Pos a) { if(a.p==a.s||(a.p==a.w&&a.w==a.v)) return true; return false; } int Judge(Pos a,Pos b){ if(a.w==b.w&&a.p==b.p&&a.s==b.s&&a.v==b.v ) return true; return false; } void GetLength(Pos start,Pos a,Pos *prev){ vector path; Pos p = a; path.push_back(p); while (!Judge(p,start)) { path.push_back(prev[p.Get()]); p = prev[p.Get()]; } cout << "Shortest path length: " << path.size()<< endl; cout << "Shortest path: \n"; for (int i = path.size() - 1; i >= 0; i--) { cout << "(" << path[i].p << "," << path[i].w << "," << path[i].s << "," << path[i].v << ") \n"; } cout << endl; } void BFS(Pos start, Pos goal, int* f) { queue q; int len = 0; Pos prev[16]; // 用于记录每个状态是由哪个状态转移而来 memset(f, 0, sizeof(f)); q.push(start); prev[start.Get()] = start; f[start.Get()] = 1; while (!q.empty()) { Pos a; a = q.front(); q.pop(); len++; if (Judge(a, goal)) { return GetLength(start,a,prev); } else { for (int i = 0; i < 4; i++) { Pos b; b = Change(a, i); if (Judge(b) && f[b.Get()] == 0) { q.push(b); f[b.Get()] = 1; prev[b.Get()] = a; // 记录当前状态是由哪个状态转移而来 } } } } } int main(){ int pathlength,f[16]; Pos start; Pos goal; start.p=0; start.s=0; start.w=0; start.v=0; goal.p=1; goal.s=1; goal.v=1; goal.w=1; for(int i=0;i<16;i++) f[i]=0; BFS(start,goal,f); return 0; }

最新推荐

recommend-type

MindeNLP+MusicGen-音频提示生成

MindeNLP+MusicGen-音频提示生成
recommend-type

WNM2027-VB一款SOT23封装N-Channel场效应MOS管

SOT23;N—Channel沟道,20V;6A;RDS(ON)=24mΩ@VGS=4.5V,VGS=8V;Vth=0.45~1V;
recommend-type

谷歌文件系统下的实用网络编码技术在分布式存储中的应用

"本文档主要探讨了一种在谷歌文件系统(Google File System, GFS)下基于实用网络编码的策略,用于提高分布式存储系统的数据恢复效率和带宽利用率,特别是针对音视频等大容量数据的编解码处理。" 在当前数字化时代,数据量的快速增长对分布式存储系统提出了更高的要求。分布式存储系统通过网络连接的多个存储节点,能够可靠地存储海量数据,并应对存储节点可能出现的故障。为了保证数据的可靠性,系统通常采用冗余机制,如复制和擦除编码。 复制是最常见的冗余策略,简单易行,即每个数据块都会在不同的节点上保存多份副本。然而,这种方法在面对大规模数据和高故障率时,可能会导致大量的存储空间浪费和恢复过程中的带宽消耗。 相比之下,擦除编码是一种更为高效的冗余方式。它将数据分割成多个部分,然后通过编码算法生成额外的校验块,这些校验块可以用来在节点故障时恢复原始数据。再生码是擦除编码的一个变体,它在数据恢复时只需要下载部分数据,从而减少了所需的带宽。 然而,现有的擦除编码方案在实际应用中可能面临效率问题,尤其是在处理大型音视频文件时。当存储节点发生故障时,传统方法需要从其他节点下载整个文件的全部数据,然后进行重新编码,这可能导致大量的带宽浪费。 该研究提出了一种实用的网络编码方法,特别适用于谷歌文件系统环境。这一方法优化了数据恢复过程,减少了带宽需求,提高了系统性能。通过智能地利用网络编码,即使在节点故障的情况下,也能实现高效的数据修复,降低带宽的浪费,同时保持系统的高可用性。 在音视频编解码场景中,这种网络编码技术能显著提升大文件的恢复速度和带宽效率,对于需要实时传输和处理的媒体服务来说尤其重要。此外,由于网络编码允许部分数据恢复,因此还能减轻对网络基础设施的压力,降低运营成本。 总结起来,这篇研究论文为分布式存储系统,尤其是处理音视频内容的系统,提供了一种创新的网络编码策略,旨在解决带宽效率低下和数据恢复时间过长的问题。这一方法对于提升整个系统性能,保证服务的连续性和可靠性具有重要的实践意义。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【功率因数校正秘籍】:10个步骤提升电能利用率

![【功率因数校正秘籍】:10个步骤提升电能利用率](https://img-blog.csdnimg.cn/direct/829b6c5a308c40129620b20de2ebfcd9.png) # 1. 功率因数校正概述 功率因数是衡量交流电系统中有效功率与视在功率之比的指标,反映了电能利用的效率。当功率因数较低时,系统中的无功功率会增加,导致电能损耗、电压波动和电网容量浪费等问题。 功率因数校正是一种通过增加或减少无功功率来提高功率因数的技术。通过安装无功补偿设备,如电容器或电抗器,可以抵消感性或容性负载产生的无功功率,从而提高系统中的功率因数。功率因数校正不仅可以节约电能,还可以
recommend-type

``` if build_id then -- 单个屋子 else -- 所有屋子 end ```

在你的代码片段中,`build_id` 的存在与否决定了执行不同的逻辑。如果 `build_id` 为真(非空或非零),则执行针对单个屋子的代码;否则,执行针对所有屋子的代码。这种结构在 Lua 中已经相对简洁,但为了提高可读性和潜在的性能优化,你可以考虑以下几点: 1. **使用更明确的条件语句**:可以使用 `if build_id ~= nil` 替换 `if build_id then`,因为 `nil` 在 Lua 中被视为 `false`。 2. **逻辑封装**:如果两个分支的代码复杂度相当,可以考虑将它们抽象为函数,这样更易于维护和复用。 3. **避免不必要的布尔转换*
recommend-type

跨国媒体对南亚农村社会的影响:以斯里兰卡案例的社会学分析

本文档《音视频-编解码-关于跨国媒体对南亚农村群体的社会的社会学分析斯里兰卡案例研究G.pdf》主要探讨了跨国媒体在南亚农村社区中的社会影响,以斯里兰卡作为具体案例进行深入剖析。研究从以下几个方面展开: 1. 引言与研究概述 (1.1-1.9) - 介绍部分概述了研究的背景,强调了跨国媒体(如卫星电视、互联网等)在全球化背景下对南亚农村地区的日益重要性。 - 阐述了研究问题的定义,即跨国媒体如何改变这些社区的社会结构和文化融合。 - 提出了研究假设,可能是关于媒体对社会变迁、信息传播以及社区互动的影响。 - 研究目标和目的明确,旨在揭示跨国媒体在农村地区的功能及其社会学意义。 - 也讨论了研究的局限性,可能包括样本选择、数据获取的挑战或理论框架的适用范围。 - 描述了研究方法和步骤,包括可能采用的定性和定量研究方法。 2. 概念与理论分析 (2.1-2.7.2) - 跨国媒体与创新扩散的理论框架被考察,引用了Lerner的理论来解释信息如何通过跨国媒体传播到农村地区。 - 关于卫星文化和跨国媒体的关系,文章探讨了这些媒体如何成为当地社区共享的文化空间。 - 文献还讨论了全球媒体与跨国媒体的差异,以及跨国媒体如何促进社会文化融合。 - 社会文化整合的概念通过Ferdinand Tonnies的Gemeinshaft概念进行阐述,强调了跨国媒体在形成和维持社区共同身份中的作用。 - 分析了“社区”这一概念在跨国媒体影响下的演变,可能涉及社区成员间交流、价值观的变化和互动模式的重塑。 3. 研究计划与章节总结 (30-39) - 研究计划详细列出了后续章节的结构,可能包括对斯里兰卡特定乡村社区的实地考察、数据分析、以及结果的解读和讨论。 - 章节总结部分可能回顾了前面的理论基础,并预示了接下来将要深入研究的具体内容。 通过这份论文,作者试图通过细致的社会学视角,深入理解跨国媒体如何在南亚农村群体中扮演着连接、信息流通和文化融合的角色,以及这种角色如何塑造和影响他们的日常生活和社会关系。对于理解全球化进程中媒体的力量以及它如何塑造边缘化社区的动态变化,此篇研究具有重要的理论价值和实践意义。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

STM32单片机传感器接口应用:温度传感器、加速度传感器、陀螺仪,实战指南

![stm32单片机课程设计](http://embedded-lab.com/blog/wp-content/uploads/2015/03/Connection-Diagram.png) # 1. STM32单片机传感器接口概述** STM32单片机集成了丰富的传感器接口,为开发人员提供了便捷的传感器连接和应用方案。传感器接口类型多样,包括模拟接口、数字接口和专用接口,满足不同传感器的连接需求。 通过传感器接口,STM32单片机可以获取传感器数据,进行数据处理和分析,从而实现各种应用功能。传感器接口的配置和使用涉及到硬件电路设计和软件编程,需要深入理解传感器特性和接口协议。 # 2.
recommend-type

程序哪里有错误 fun(int *p1,int *p2) { int *p; *p = *p1; *p1 = *p2; *p2 = *p; }

这个函数`fun(int *p1, int *p2)`存在几个错误和潜在问题: 1. 变量声明与赋值:你试图通过`*p = *p1`来分配指针`p`的值,但实际上`p`是一个未初始化的指针,直接赋值可能会导致不确定的行为。正确的做法是先为`p`指向一个内存位置。 2. 临时变量:你的代码没有明确使用`p`这个临时变量。如果你想交换`p1`和`p2`所指向的值,应该使用指针的解引用操作,而不是将`*p`赋值给它们。 3. 指向不确定的数据:由于`p`没有被初始化,如果它指向的是栈上的临时空间,当函数结束时这些值可能会丢失,除非特别指定它指向堆中的数据。 修复后的代码可能如下所示: ```