print('Epoch {}/{}'.format(epoch, num_epochs - 1))
时间: 2024-09-20 19:15:05 浏览: 49
在训练过程中,`print('Epoch {}/{}'.format(epoch, num_epochs - 1))` 这一行用于显示当前正在执行的训练轮次(Epoch)与总共轮数的关系。`epoch` 是当前迭代的次数,`num_epochs - 1` 则表示训练的总轮数减去1,因为通常`num_epochs`是从1开始计数的。
例如,如果你正在进行第10轮的训练,而总共有20轮,这行代码会输出 `Epoch 9/19`。这个信息可以帮助你跟踪训练进度,特别是在日志文件中查看时。
具体实现可能在每个训练批次结束后插入到训练循环里,比如TensorFlow或PyTorch的`for`循环中:
```python
for epoch in range(num_epochs):
# ...
train(...)
if epoch % log_interval == 0: # 每log_interval轮输出一次
print('Epoch {}/{}'.format(epoch, num_epochs - 1))
# ...
```
这里假设`train(...)`是你训练模型的部分,`log_interval`是每隔多少轮输出一次。
相关问题
下面代码转化为paddle2.2.2代码 :from __future__ import division import os, time, scipy.io import torch import torch.nn as nn import torch.optim as optim import numpy as np import glob import cv2 import argparse from PIL import Image from skimage.measure import compare_psnr,compare_ssim from tensorboardX import SummaryWriter from models import RViDeNet from utils import * parser = argparse.ArgumentParser(description='Pretrain denoising model') parser.add_argument('--gpu_id', dest='gpu_id', type=int, default=0, help='gpu id') parser.add_argument('--num_epochs', dest='num_epochs', type=int, default=33, help='num_epochs') parser.add_argument('--patch_size', dest='patch_size', type=int, default=128, help='patch_size') parser.add_argument('--batch_size', dest='batch_size', type=int, default=1, help='batch_size') args = parser.parse_args() os.environ["CUDA_VISIBLE_DEVICES"] = str(args.gpu_id) save_dir = './pretrain_model' if not os.path.isdir(save_dir): os.makedirs(save_dir) gt_paths1 = glob.glob('./data/SRVD_data/raw_clean/MOT17-02_raw/*.tiff') gt_paths2 = glob.glob('./data/SRVD_data/raw_clean/MOT17-09_raw/*.tiff') gt_paths3 = glob.glob('./data/SRVD_data/raw_clean/MOT17-10_raw/*.tiff') gt_paths4 = glob.glob('./data/SRVD_data/raw_clean/MOT17-11_raw/*.tiff') gt_paths = gt_paths1 + gt_paths2 + gt_paths3 + gt_paths4 ps = args.patch_size # patch size for training batch_size = args.batch_size # batch size for training
把原始代码转换为PaddlePaddle 2.2.2 的代码如下:
```python
import os
import time
import argparse
import glob
import cv2
import numpy as np
from PIL import Image
from skimage.measure import compare_psnr, compare_ssim
from tensorboardX import SummaryWriter
from models import RViDeNet
from utils import *
import paddle
from paddle import nn
from paddle.optimizer import optim
paddle.set_device('gpu')
parser = argparse.ArgumentParser(description='Pretrain denoising model')
parser.add_argument('--gpu_id', dest='gpu_id', type=int, default=0, help='gpu id')
parser.add_argument('--num_epochs', dest='num_epochs', type=int, default=33, help='num_epochs')
parser.add_argument('--patch_size', dest='patch_size', type=int, default=128, help='patch_size')
parser.add_argument('--batch_size', dest='batch_size', type=int, default=1, help='batch_size')
args = parser.parse_args()
save_dir = './pretrain_model'
if not os.path.isdir(save_dir):
os.makedirs(save_dir)
gt_paths1 = glob.glob('./data/SRVD_data/raw_clean/MOT17-02_raw/*.tiff')
gt_paths2 = glob.glob('./data/SRVD_data/raw_clean/MOT17-09_raw/*.tiff')
gt_paths3 = glob.glob('./data/SRVD_data/raw_clean/MOT17-10_raw/*.tiff')
gt_paths4 = glob.glob('./data/SRVD_data/raw_clean/MOT17-11_raw/*.tiff')
gt_paths = gt_paths1 + gt_paths2 + gt_paths3 + gt_paths4
ps = args.patch_size # patch size for training
batch_size = args.batch_size # batch size for training
num_epochs = args.num_epochs
train_dataset = DatasetDenoising(gt_paths, ps=ps)
train_loader = paddle.io.DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=4)
model = RViDeNet()
model.train()
optimizer = optim.Adam(learning_rate=1e-4, parameters=model.parameters())
writer = SummaryWriter()
for epoch in range(num_epochs):
epoch_start_time = time.time()
epoch_loss = 0
for i, (noisy_patches, gt_patches) in enumerate(train_loader()):
noisy_patches = paddle.to_tensor(noisy_patches)
gt_patches = paddle.to_tensor(gt_patches)
output = model(noisy_patches)
loss = nn.functional.mse_loss(output, gt_patches)
optimizer.clear_grad()
loss.backward()
optimizer.step()
epoch_loss += loss
epoch_time = time.time() - epoch_start_time
epoch_loss = epoch_loss / len(train_loader)
print("Epoch [{}/{}] Loss: {:.5f} [{:.2f}s]".format(epoch + 1, num_epochs, epoch_loss, epoch_time))
writer.add_scalar("Loss/train", epoch_loss, epoch + 1)
if (epoch + 1) % 10 == 0:
model_path = os.path.join(save_dir, 'RViDeNet_epoch{}.pdparams'.format(epoch + 1))
paddle.save(model.state_dict(), model_path)
print("Saving model to: {}".format(model_path))
writer.close()
```
描述这段代码 #定义训练网络函数,网络,损失评价,训练集 def train(net, trainloader, criterion, optimizer, num_epochs, device, num_print, lr_scheduler=None, testloader=None): net.train() record_train = list() record_test = list() for epoch in range(num_epochs): print("========== epoch: [{}/{}] ==========".format(epoch + 1, num_epochs)) total, correct, train_loss = 0, 0, 0 start = time.time() for i, (X, y) in enumerate(trainloader): X, y = X.to(device), y.to(device) output = net(X) loss = criterion(output, y) optimizer.zero_grad() loss.backward() optimizer.step() train_loss += loss.item() total += y.size(0) correct += (output.argmax(dim=1) == y).sum().item() train_acc = 100.0 * correct / total if (i + 1) % num_print == 0: print("step: [{}/{}], train_loss: {:.3f} | train_acc: {:6.3f}% | lr: {:.6f}" \ .format(i + 1, len(trainloader), train_loss / (i + 1), \ train_acc, get_cur_lr(optimizer))) if lr_scheduler is not None: lr_scheduler.step() print("--- cost time: {:.4f}s ---".format(time.time() - start)) if testloader is not None: record_test.append(test(net, testloader, criterion, device)) record_train.append(train_acc) return record_train, record_test def get_cur_lr(optimizer): for param_group in optimizer.param_groups: return param_group['lr'] #定义保存网络参数的函数 def save(net,path): torch.save(net.state_dict(), path)
这段代码定义了一个训练神经网络的函数train,包含了训练数据集、网络模型、损失评价函数、优化器、训练轮数、设备类型等参数。在每个epoch循环中,对于训练集中的每个batch数据,先将输入和标签数据放到指定设备上,然后将输入数据传入网络模型,得到输出,再根据损失评价函数计算出损失值,根据损失值计算梯度并使用优化器更新网络模型参数。同时,统计每个batch的训练准确率和损失值,以及整个epoch的训练准确率,并在每个num_print步输出一次。如果设置了学习率调整器lr_scheduler,则在每个epoch结束后调用lr_scheduler.step()函数对学习率进行调整。如果提供了测试数据集testloader,则在每个epoch结束后调用test函数对测试数据集进行测试,并将测试结果记录在record_test列表中。最后返回训练准确率和测试准确率分别随epoch变化的记录列表record_train和record_test。还定义了一个保存网络参数的函数save,用于将训练好的网络模型参数保存到指定路径。
阅读全文