class KthLargest { int K; priority_queue<int, vector<int>, greater<int>> pq; public: KthLargest(int k, vector<int>& nums) { for (int n : nums) { pq.push(n); if (pq.size() > k) pq.pop(); } K = k; } int add(int val) { pq.push(val); if (pq.size() > K) pq.pop(); return pq.top(); } }; 解释这段代码

时间: 2024-04-11 08:30:40 浏览: 11
这段代码是一个类`KthLargest`的实现,用于找到第K大的元素。它使用了一个最小堆(`priority_queue`)来维护当前最大的K个元素。 在类的构造函数中,通过循环遍历给定的整数数组`nums`,将每个元素插入到最小堆中。如果最小堆的大小超过了K,就将堆顶元素弹出,以保持堆的大小为K。这样,构造函数结束后,最小堆中就保存了数组中最大的K个元素。 `add`函数用于向已构建的堆中添加新的元素`val`。首先将`val`插入到堆中,然后判断堆的大小是否超过了K。如果超过了K,就弹出堆顶元素,以保持堆的大小为K。最后,返回当前堆顶元素,即为第K大的元素。 使用这个类,我们可以先构造一个KthLargest对象,并传入初始的K和一组初始数字数组。然后通过调用`add`方法不断地添加新的元素,并可以每次得到当前第K大的元素。 总而言之,这段代码通过使用最小堆来实现了找到第K大的元素,并提供了添加新元素的功能。
相关问题

请给一下代码加注释,越详细越好。AStar.h:#ifndef ASTAR_H #define ASTAR_H #include <vector> using namespace std; class AStar { public: AStar(int n); void add_edge(int u, int v, int w); void set_heuristic(vector<int>& h); void shortest_path(int s, int t); vector<int> get_dist(); vector<int> get_prev(); private: struct edge { int to, weight; edge(int t, int w) : to(t), weight(w) {} }; int n; vector<vector<edge>> graph; vector<vector<edge>> rev_graph; vector<int> dist; vector<int> prev; vector<int> heuristic; }; class Astar { }; #endif;AStar.cpp:#include "AStar.h" #include <vector> #include <queue> #include <limits> using namespace std; AStar::AStar(int n) : n(n), graph(n), rev_graph(n), dist(n, numeric_limits<int>::max()), prev(n, -1), heuristic(n, 0) {} void AStar::add_edge(int u, int v, int w) { graph[u].push_back(edge(v, w)); rev_graph[v].push_back(edge(u, w)); } void AStar::set_heuristic(vector<int>& h) { heuristic = h; } void AStar::shortest_path(int s, int t) { priority_queue<pair<int, int>, vector<pair<int, int>>, greater<pair<int, int>>> pq; dist[s] = 0; pq.push(make_pair(heuristic[s], s)); while (!pq.empty()) { int u = pq.top().second; pq.pop(); if (u == t) return; for (auto& e : graph[u]) { int v = e.to; int w = e.weight; if (dist[v] > dist[u] + w) { dist[v] = dist[u] + w; prev[v] = u; pq.push(make_pair(dist[v] + heuristic[v], v)); } } for (auto& e : rev_graph[u]) { int v = e.to; int w = e.weight; if (dist[v] > dist[u] + w) { dist[v] = dist[u] + w; prev[v] = u; pq.push(make_pair(dist[v] + heuristic[v], v)); } } } } vector<int> AStar::get_dist() { return dist; } vector<int> AStar::get_prev() { return prev; }

注释已添加在代码中,以//开头。 AStar.h: ```cpp #ifndef ASTAR_H #define ASTAR_H #include <vector> using namespace std; class AStar { public: //构造函数,传入节点数n AStar(int n); //添加一条从u到v,边权为w的边 void add_edge(int u, int v, int w); //设置启发函数 void set_heuristic(vector<int>& h); //求从s到t的最短路 void shortest_path(int s, int t); //返回最短路长度 vector<int> get_dist(); //返回最短路的路径 vector<int> get_prev(); private: //边,包括到达的点和边权 struct edge { int to, weight; edge(int t, int w) : to(t), weight(w) {} }; int n; //节点数 vector<vector<edge>> graph; //正向图 vector<vector<edge>> rev_graph; //反向图 vector<int> dist; //最短路长度 vector<int> prev; //最短路的前驱 vector<int> heuristic; //启发函数 }; class Astar { }; #endif; ``` AStar.cpp: ```cpp #include "AStar.h" #include <vector> #include <queue> #include <limits> using namespace std; AStar::AStar(int n) : n(n), graph(n), rev_graph(n), dist(n, numeric_limits<int>::max()), //初始化为无穷大 prev(n, -1), //初始化为-1 heuristic(n, 0) {} //初始化为0 void AStar::add_edge(int u, int v, int w) { graph[u].push_back(edge(v, w)); //添加正向边 rev_graph[v].push_back(edge(u, w)); //添加反向边 } void AStar::set_heuristic(vector<int>& h) { heuristic = h; } void AStar::shortest_path(int s, int t) { priority_queue<pair<int, int>, vector<pair<int, int>>, greater<pair<int, int>>> pq; //小根堆,每个元素为(pair<估价函数值, 节点编号>) dist[s] = 0; //起点到自身距离为0 pq.push(make_pair(heuristic[s], s)); //将起点加入堆 while (!pq.empty()) { int u = pq.top().second; //取出堆顶节点 pq.pop(); if (u == t) return; //到达终点,直接返回 //遍历u的正向边 for (auto& e : graph[u]) { int v = e.to; int w = e.weight; if (dist[v] > dist[u] + w) { //通过u更新v的最短路 dist[v] = dist[u] + w; prev[v] = u; //更新前驱 pq.push(make_pair(dist[v] + heuristic[v], v)); //将v加入堆 } } //遍历u的反向边 for (auto& e : rev_graph[u]) { int v = e.to; int w = e.weight; if (dist[v] > dist[u] + w) { //通过u更新v的最短路 dist[v] = dist[u] + w; prev[v] = u; //更新前驱 pq.push(make_pair(dist[v] + heuristic[v], v)); //将v加入堆 } } } } vector<int> AStar::get_dist() { return dist; } vector<int> AStar::get_prev() { return prev; } ``` 在AStar.cpp中,主要实现了AStar类中的函数。其中,shortest_path函数是最重要的函数,该函数使用了A*算法来求解最短路。 该算法主要的思想是:将Dijkstra算法中的“距离”改为“估价函数值”,即f(n)=g(n)+h(n),g(n)表示从起点到当前节点的实际距离,h(n)表示从当前节点到终点的估计距离。在搜索过程中,每次从开放列表中选择f(n)值最小的节点进行扩展。在AStar.cpp中,使用了一个小根堆来维护开放列表,优化了搜索效率。 值得注意的是,A*算法并不能保证一定能够找到最短路径,但是在实际应用中,该算法的效率和准确性都得到了广泛的认可。

#pragma once #include <assert.h> namespace mwq { template <class T> struct Less { bool operator()(const T& x, const T& y) const { return x < y; } }; template <class T> struct Greater { bool operator()(const T& x, const T& y) const { return x > y; } }; template <class T, class Container = vector<T>, class Compare = Less<T>> //默认是大堆 class priority_queue { void Adjustup(int child) { int parent = (child - 1) / 2; Compare com; while (child > 0) { //if (_con[parent] < _con[child]) if(com(_con[parent], _con[child])) { swap(_con[parent], _con[child]); child = parent; parent = (child - 1) / 2; } else { break; } } } void AdjustDown(int parent) { int child = parent * 2 + 1; Compare com; while (child < _con.size()) { //if (child + 1 < _con.size() && _con[child] < _con[child + 1]) if (child + 1 < _con.size() && com(_con[child], _con[child + 1])) { child++; } //if (_con[parent] < _con[child]) if (com(_con[parent], _con[child])) { swap(_con[parent], _con[child]); parent = child; child = parent * 2 + 1; } else { break; } } } public: priority_queue() :_con() {} void push(const T& x) { _con.push_back(x); Adjustup(_con.size() - 1); } void pop() { assert(!empty()); swap(_con[0], _con[_con.size() - 1]); _con.pop_back(); AdjustDown(0); } T& top() { assert(!empty()); return _con[0]; } int size() const { return _con.size(); } bool empty() const { return _con.size() == 0; } private: vector<T> _con; }; void test1() { priority_queue<int> pq; pq.push(1); pq.push(2); pq.push(3); pq.push(4); pq.push(5); pq.push(6); while (!pq.empty()) { cout << pq.top() << " "; pq.pop(); } cout << endl; } }

根据错误信息来看,你在编译 `void mwq::priority_queue<int,std::vector<T>,mwq::Less<T>>::AdjustDown(int)` 这个类模板成员函数时出现了问题。根据代码来看,你在类模板 `priority_queue` 中定义了一个成员函数 `AdjustDown(int parent)`,但是在函数中使用了模板参数 `T`,但是没有进行模板参数的声明。建议你在函数开头增加 `template <class T>` 声明即可,像这样: ```cpp template <class T> void AdjustDown(int parent) { //... } ``` 同时,为了保证 `AdjustDown` 函数中可以使用 `Compare` 类型进行比较,你需要在函数中加上 `Compare` 类型的声明,像这样: ```cpp template <class T, class Container = vector<T>, class Compare = Less<T>> class priority_queue { public: //... private: Container _con; Compare com; // 增加 Compare 声明 }; ``` 希望这些修改可以解决你的问题。

相关推荐

最新推荐

recommend-type

毕业设计MATLAB_执行一维相同大小矩阵的QR分解.zip

毕业设计matlab
recommend-type

ipython-7.9.0.tar.gz

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

debugpy-1.0.0b3-cp37-cp37m-manylinux2010_x86_64.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

用Spring boot和vue写一个登录注册界面

好的,这是一个比较常见的技术问题,我可以为您提供一些参考资料和思路。首先,您可以使用Spring Boot作为后端框架来处理用户认证和注册的逻辑,比如使用Spring Security实现用户登录认证。同时,您还需要设计相应的数据模型和数据库表结构来存储用户信息。在前端方面,您可以使用Vue.js作为框架来构建登录注册页面,使用Axios来发起API请求并和后端进行交互。当然,在实现过程中,还需要考虑一些具体细节,比如数据校验、安全性和用户体验等方面。希望这些信息能够帮助到您。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB柱状图在数据分析中的作用:从可视化到洞察

![MATLAB柱状图在数据分析中的作用:从可视化到洞察](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB柱状图概述** 柱状图是一种广泛用于数据可视化的图表类型,它使用垂直条形来表示数据中不同类别或组别的值。在MATLAB中,柱状图通过`bar`函数创建,该函数接受数据向量或矩阵作为输入,并生成相应的高度条形。 柱状图的优点在于其简单性和易于理解性。它们可以快速有效地传达数据分布和组别之间的比较。此外,MATLAB提供了广泛的定制选项,允许用户调整条形颜色、