matlab 梯度下降算法
时间: 2023-10-19 20:26:09 浏览: 110
梯度下降算法是一种用于优化的迭代算法,常用于求解最小化一个函数的问题。在 MATLAB 中,可以使用以下步骤实现梯度下降算法:
1. 定义目标函数:首先,需要定义一个要最小化的目标函数。这个函数可以是任意的可微函数。
2. 计算梯度:对目标函数求偏导数,得到梯度向量。在 MATLAB 中,可以使用 `gradient` 函数计算梯度。
3. 初始化参数:选择一个初始参数向量,作为梯度下降算法的起点。
4. 迭代更新参数:根据梯度方向和学习率,更新参数向量。重复这个过程直到满足停止准则(比如达到最大迭代次数或梯度接近零)。
5. 返回结果:返回最终的参数向量作为最优解。
下面是一个简单的示例代码,演示了如何在 MATLAB 中实现梯度下降算法:
```matlab
% 定义目标函数
function cost = myObjective(x)
cost = (x(1) - 2)^2 + (x(2) - 3)^2;
end
% 计算梯度
function grad = myGradient(x)
grad = gradient(@myObjective, x);
end
% 初始化参数
x0 = [0; 0];
% 设置学习率和迭代次数
learningRate = 0.1;
maxIter = 100;
% 梯度下降算法
for iter = 1:maxIter
% 计算梯度
grad = myGradient(x0);
% 更新参数
x0 = x0 - learningRate * grad;
% 判断停止准则
if norm(grad) < eps
break;
end
end
% 输出最优解
disp('Optimal solution:');
disp(x0);
```
请注意,这只是一个简单的示例,并且需要根据具体的问题进行适当的修改和调整。梯度下降算法的性能和收敛速度也取决于学习率的选择,因此在实际应用中需要进行调参。
阅读全文